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ABSTRACT 
 
 

Over 2 million Anterior Cruciate Ligament (ACL) injuries occur annually 

worldwide resulting in considerable economic and health burdens (e.g., suffering, 

surgery, loss of function, risk for re-injury, and osteoarthritis). Current screening 

methods are effective but they generally rely on expensive and time-consuming 

biomechanical movement analysis, and thus are impractical solutions. In this 

dissertation, I report on a series of studies that begins to investigate one potentially 

efficient alternative to biomechanical screening, namely skilled observational risk 

assessment (e.g., having experts estimate risk based on observations of athletes 

movements).  Specifically, in Study 1 I discovered that ACL injury risk can be accurately 

and reliably estimated with nearly instantaneous visual inspection when observed by 

skilled and knowledgeable professionals. Modern psychometric optimization techniques 

were then used to develop a robust and efficient 5-item test of ACL injury risk prediction 

skill—i.e., the ACL Injury-Risk-Estimation Quiz or ACL-IQ.  Study 2 cross-validated the 

results from Study 1 in a larger representative sample of both skilled (Exercise 

Science/Sports Medicine) and un-skilled (General Population) groups.  In accord with 

research on human expertise, quantitative structural and process modeling of risk 

estimation indicated that superior performance was largely mediated by specific 

strategies and skills (e.g., ignoring irrelevant information), independent of domain 

general cognitive abilities (e.g., metal rotation, general decision skill).  These cognitive 

models suggest that ACL-IQ is a trainable skill, providing a foundation for future 

research and applications in training, decision support, and ultimately clinical screening 

investigations.  Overall, I present the first evidence that observational ACL injury risk 

prediction is possible including a robust technology for fast, accurate and reliable 
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measurement—i.e., the ACL-IQ. Discussion focuses on applications and outreach 

including a web platform that was developed to house the test, provide a repository for 

further data collection, and increase public and professional awareness and outreach 

(www.ACL-IQ.org). Future directions and general applications of the skilled movement 

analysis approach are also discussed. 
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CHAPTER 1: INTRODUCTION 
 

Female athletes are approximately three times more likely to tear an anterior 

cruciate ligament (ACL) compared to their male counterparts (Prodromos, Han, 

Rogowski, Joyce, & Shi, 2007). Younger (age, 15-25 years) athletes participating in 

landing and cutting sports such as basketball and soccer are at greatest risk for ACL 

injury (Griffin et al., 2006). This elevated risk coupled with a nearly two-fold increase in 

female sports participation over the last 30 years (Irich, 2012; NFSHSA, 2012) has led to 

a rapid rise in ACL injuries in females (≈ 3 injuries per 10,000 athlete-exposures or 

around 1 injury per 30 individuals during a sports season). Anterior cruciate ligament 

surgery cost has been shown to be approximately $5,000, which doesn’t include the 

post-operative rehabilitation or lost time from work/sport (Swenson et al., 2013). In the 

U.S. alone, the annual cost of ACL injury likely exceeds $3 billion (Kim, Bosque, 

Meechan, Jamali, & Marder, 2011). Additional consequences of ACL injury include time 

out of sport/school, scholarship loss, significant risk for re-injury, and osteoarthritis 

(Ardern, Webster, Taylor, & Feller, 2011; Lohmander, Englund, Dahl, & Roos, 2007; 

Wright et al., 2007). Interestingly, most ACL injuries occur in a non-contact situation 

(Agel, Arendt, & Bershadsky, 2005; Krosshaug et al., 2007b) and are likely preventable 

(Hewett, Myer, Ford, Paterno, & Quatman, 2012).  

Neuromuscular training can reduce the relative risk for non-contact ACL injury 

by 73.4%.  Unfortunately, to prevent one injury, 108 individuals must participate in 

training (Sugimoto, Myer, McKeon, & Hewett, 2012). The time commitment involved in 

training this number of individuals is non-trivial.  Moreover, the prevention techniques 

including physical training likely only benefit high-risk athletes (Myer, Ford, Brent, & 

Hewett, 2007). Administering prevention programs to the low-risk likely constitutes an 
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inefficient use of time and resources.  If training instead targeted the high-risk, the 

number of individuals needed to train to prevent an injury would be reduced.    

Anterior cruciate ligament injury risk screening tools have been identified and 

developed for high school age (15-19 years) female athletes using prospective 3D 

biomechanical analysis procedures. Specifically, 205 young (age ≈ 16 years) female 

athletes were screened (using 3D biomechanical motion analysis of the drop vertical 

jump) and tracked through two sports seasons (13 months) (Hewett et al., 2005). Knee 

abduction moment (i.e., torque generated rotating the knee inward) and angles (initial 

contact and peak values) were found to be significant predictors of ACL injury status for 

the 9 non-contact ACL injuries. Peak knee abduction moment was found to be the best 

independent predictor of injury status displaying sensitivity of 78% and specificity of 

73%. Three-dimensional, biomechanical laboratory screening is not feasible for 

widespread field-based or clinical use because of the high associated cost, specialized 

equipment, and implementation times. However, the existing, high-precision tools have 

provided a biomechanical risk assessment standard that can be used for validation of 

and comparison with alternative screening approaches.  

A clinical based nomogram was developed for identifying individuals at high-risk 

for ACL injury1 and involved the use of two standard video cameras, measuring tape, 

scale, and isokinetic dynamometry (Myer, Ford, Khoury, Succop, & Hewett, 2010b). 

Analyses of the ACL nomogram screening method revealed considerable advantages over 

3D biomechanical laboratory screening techniques.  For example, it is relatively accurate 

and yet considerably quicker and less expensive than 3D biomechanical analysis, 

requiring only a modest amount of time (≈ 5 to 15 minutes per individual) and more 

                                                        
1 The ACL nomogram used logistic regression to predict high knee abduction moment 
(>21.74 Nm), not injury risk. 
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affordable equipment. The ACL nomogram approach represents major progress in the 

development of cost-effective, efficient screening tools.  Central to the current thesis, 

theoretically, the success of the ACL nomogram also suggests that other even simpler, 

less-expensive methods based on observational movement diagnostics may also provide 

feasible screening methods.     

Observational Movement Diagnosis 

Visual inspection or observational movement diagnosis is one alternative 

screening method, which would reduce screening time and cost, while preserving 

relatively high-risk assessment accuracy (Knudson, 2013). For example, a practitioner 

(i.e., coach, athletic trainer, physical therapist, etc.) could nearly instantaneously assess 

ACL injury risk by observing a task where movement patterns would be similar to those 

that cause ACL injury (i.e., jump landing, cutting, etc.). Unfortunately, the validity and 

consistency of observational assessment of ACL injury risk is poorly understood. A small 

body of research has investigated the underlying psychological mechanisms that may 

give rise to differences in observational movement diagnosis skill. Nevertheless, 

identifying athletes or patients with abnormal/flawed or inefficient movement is a 

common task for many coaches (Knudson, 2000), sport judges (Plessner & Haar, 2006), 

and sports medicine practitioners (i.e., physical therapist, athletic trainer, etc.) (Jensen, 

Guyer, Shepard, & Hack, 2000). Research in these disciplines can contribute to the 

understanding of the overall dynamics of observational movement diagnosis.  The 

following review will discuss the quantification methods and initial evidence relating to 

observational ACL injury risk estimation. Additionally, the various environmental and 

perceptual-cognitive factors influencing skilled and expert performance will be 

highlighted.  
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Measuring Skill and Expert Performance 

Various psychometric measurement methods have been used to assess 

differences in skilled performance for more than a century.  Psychometric assessments 

are commonly used in the selection of employees, awarding of promotion, optimization 

of training, and have also been extensively validated for use in clinical and educational 

settings.  Specifically, the term “psychometrics” refers to the field of study specializing in 

theory and measurement techniques in psychology. Within the field of psychometrics, 

the expert-performance approach provides a systematic framework for assessing high 

levels of domain-specific expertise, grounded in the use of domain-specific or 

representative tasks that capture the essence of expertise (Ericsson & Lehmann, 1996). 

Assessing the level of expert-performance under standardized conditions is the first step 

in the expert-performance approach. Once objective performance is assessed, cognitive 

process tracing techniques can be used to investigate the underlying mechanisms 

mediating superior performance. Additionally, the development of expertise can be 

investigated through examining practice history or by conducting prospective training 

studies. The information gained through this systematic approach can then be used to 

develop training programs or decision support systems that reliably improve 

performance. Consistent with standards in psychometric theory, (Ericsson & Lehmann, 

1996) define expert performance as: “consistently superior performance on a specified 

set of representative tasks for a domain.” This definition is similar to what industrial-

organizational (I-O) researchers would call a work sample test—defined as “a test in 

which the applicant performs a selected set of actual tasks that are physically and/or 

psychologically similar to those performed on the job” (Ployhart, Schneider, & Schmitt, 

2006).  
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Industrial-organizational researchers and human resources professionals often 

use supervisor ratings of performance as criteria for “performance” as opposed to work 

sample tests (Viswesvaran, Ones, & Schmidt, 1996). Supervisor ratings are subjective 

evaluations of job performance, usually across multiple dimensions of a job 

(Viswesvaran et al., 1996). Meta-analyses of work sample tests and supervisory ratings of 

performance have revealed correlations coefficients of .33 (Roth, Bobko, & McFarland, 

2005) and .32 (Schmitt, Gooding, Noe, & Kirsch, 1984). However, work sample tests are 

more reliable than supervisory ratings (mean r = .71 vs. r = .60) (Roth et al., 2005). Since 

observational movement diagnosis is a specific skill and may be part of many jobs (i.e., 

physical therapy, athletic training, strength & conditioning, and athletic coaching), a 

more objective evaluation of performance is likely to be preferable to other types of less 

objective supervisory ratings. Specifically, in the context of observational movement 

diagnosis, “expert” or “skilled” observers should display accurate and consistent 

judgments during a task that is representative of the constraints they would encounter 

while diagnosing a specific movement in representative, ecological conditions.  

A Representative Task 

Using the expert-performance approach, Ericsson and Ward (2007) describe a 

representative task as “… experts’ real-world performance is scrutinized to identify 

naturally occurring situations that require immediate action and that capture the experts’ 

superior selection or execution of actions in the associated domain.” Brunswik (1956) 

conception of “representativeness” in the context of task or experimental design is that 

perceptual variables should be gathered from an organism’s natural environment in 

which they routinely interact, that is, the environments that participants are adapted to. 

The expert-performance approach, however, requires that tasks also capture the essence 

of superiority. For example, de Groot (1978) identified critical chess game situations 
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where players were to generate the next best move, which has been shown to be highly 

correlated with tournament ratings (van der Maas & Wagenmakers, 2005) and has 

subsequently been used as a model for studying expertise in other domains using the 

expert-performance approach (Ericsson & Williams, 2007). The selection of tasks that 

capture expertise may be difficult when initially capturing expert or skilled performance, 

as “expert” cannot be ascertained prior to examining performance on a representative 

task; and for many domains a “gold standard” of performance is not available. The steps 

for choosing a representative task using both Brunswikian and expert-performance 

approaches would be:  

1.) Identify a task that is often (or should be) performed in the chosen domain.  

2.) Randomly sample the stimuli for the given domain/environment. 

3.) Select the stimuli that best discriminate between performance levels 

(Ericsson, 2007).  

For ACL injury risk estimation, the stimuli should be the individuals and 

screening tasks to be assessed. Since young (15-25 years) females participating in landing 

and cutting sports are at the greatest risk for ACL injury; this population should be the 

target of the judgment generalizations. Additionally, the screening task (i.e., drop vertical 

jump) must also be investigated as a representative task. Several ACL injury risk factors 

have been identified (for reviews see Hewett, Zazulak, Krosshaug, and Bahr (2012); 

Smith et al. (2012a, 2012b)). Many of the risk factors are difficult to change/modify (i.e., 

game vs. practice, gender, joint geometry/laxity, or menstrual cycle phase), thus, may 

not be suitable to serve as risk screening factors. Thus, only the modifiable risk factors 

related to movement or landing mechanics will be explored because of their modifiability 

and relative assessment ease.  
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Various movements have been used to assess high-risk movement strategies. The 

drop vertical jump (Ekegren, Miller, Celebrini, Eng, & Macintyre, 2009; Hewett et al., 

2005; Mizner, Chmielewski, Toepke, & Tofte, 2012; Myer et al., 2010b; Nilstad et al., 

2014; Noyes, 2005; Padua et al., 2009; Whatman, Hing, & Hume, 2012; Whatman, 

Hume, & Hing, 2013a), single leg squat (Ageberg et al., 2010; Stensrud, Myklebust, 

Kristianslund, Bahr, & Krosshaug, 2010), and tuck jump (Herrington, Myer, & Munro, 

2013; Myer, Ford, & Hewett, 2004) have been used to directly or indirectly assess ACL 

injury risk. The drop vertical jump (and associated biomechanical variables) is, however, 

the only movement that has been used to successfully predict ACL injury status in the 

target population (i.e., young females) (Hewett et al., 2005). With superior performance 

operationally defined and stimuli/judgment task identified, the next section will describe 

the procedures for developing a valid test aimed to assess observational ACL injury risk 

estimating skill.  

Test Development and Evaluation 
 

In addition to assessing differences in skill, a standardized assessment of 

observational ACL injury risk estimation skill could serve many purposes including 

contributing to programs evaluating the efficacy of observational assessment as an ACL 

injury risk screening method.  The test may also provide an efficient assessment of 

differences that result from various types of training or other interventions.  This section 

will describe the components of test development as well as score interpretation and 

validation.  

 Test development can be informed by two general theories or approaches including 

classical test (CTT) or item response (IRT) theories. These methods can be used to 

analyze and select appropriate test items based on the assessment needs. Following will 
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be a summary of the general procedures, benefits, and shortcomings of each approach 

(see Hambleton and Jones (1993); Lord (1980) for further review). 

 Classical test theory has historically been the dominant method for test 

development. In general IRT is described as “item-based” whereas CTT is described as 

“test-based,” although modern approaches in CTT do incorporate individual item 

analysis. The main differences reside in the modeling assumptions and sample 

requirements. The CTT framework assumes a linear relationship between test score and 

ability and that test scores and error scores are unrelated. Additionally for CTT, item 

statistics such as difficulty and discriminability are dependent on the specific sample and 

overall test score. This is problematic if the sample used for test development is different 

than the intended examinees.  

Item response analysis assumes a nonlinear relationship between item 

performance and ability, which requires fitting complex models to the test data. This 

requires a large heterogeneous sample (e.g., over 500) but allows the specific item 

characteristics to remain sample independent. Similar item statistics are calculated such 

as difficulty and discriminability plus an additional “guessing” factor. Individual item 

modeling in IRT can be used to describe overall test “informativeness” (item information 

curves), which allows for flexibility when selecting items based on the developers test 

objectives. For example, if a developer is interested in creating a test to identify high 

ability individuals, items that display higher discrimination and greater difficulty will 

provide more information towards the higher “ability” end of the spectrum and should 

be selected. Once a test is developed, validation is essential to interpret the score 

meanings and understand the underlying mechanisms of test performance.  
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Validation 
 
According to the Standards for Educational and Psychological Testing (1999): 

“Validity refers to the degree to which evidence and theory support the 

interpretations of test scores entailed by proposed uses of tests. Validity 

is, therefore, the most fundamental consideration in developing and 

evaluating tests. The process of validation involves accumulating 

evidence to provide a sound scientific basis for proposed score 

interpretations. It is the interpretations of test scores required by 

proposed uses that are evaluated, not the test itself.” (p. 9) 

 
“Validity is a unitary concept. It is the degree to which all the 

accumulated evidence supports the intended interpretation of test scores 

for the proposed purpose.” (p. 11) 

 
These definitions were influenced by Messick’s unitary concept of construct 

validity which is corroborated by evidence from five sources: content, response processes, 

internal structure, relations to other variables, and consequences (Messick, 1995). These 

components of construct validity evidence will be discussed in detail in the context of 

developing a test to assess the construct: observational ACL injury risk estimation skill. 

Content 
 

Content evidence is the “relationship between a test’s content and the construct it 

is intended to measure” (American Educational Research et al., 1999).  The test 

items/tasks should be solely related to the construct. Describing item/task inclusion 

rationale and the qualifications of the individual(s) who chose the items can assess this 

degree of relationship. In the context of ACL injury risk estimation, item inclusion 
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rationale can be described by representative sampling of stimuli, which was discussed, 

and in accordance with the Brunswikian point of view. Criteria for 

performance/expertise was addressed and composed of accuracy and consistency of 

judgment (ACL injury risk estimation).  Thus, the items of the test must ensure judgment 

accuracy and consistency are captured. Another example of content evidence would be to 

assess if “experts” agree that the content/items measure what the test is intended to 

measure.  

Response Process 
 

Response process evidence is the “fit between the construct and the detailed 

nature of performance … actually engaged in” (American Educational Research et al., 

1999). Are the cognitive processes while taking the test also representative of the 

construct intended to be measured?  Cognitive process tracing methods such as think 

aloud or verbal protocol analysis, eye-tracking, and response times may be used to 

provide evidence for this component, as well as computational modeling techniques (e.g., 

multinomial comparison). To further illustrate, if the skill of ACL injury risk estimation 

is the central skill to be measured, and this skill is thought to be a function of extensive 

domain-specific knowledge and elaborate memory structure, a valid test would reveal a 

tight link between cognitive process-tracing measurements of skilled individuals, 

domain-specific knowledge, and overall task performance.  

Internal Structure 
 

Internal structure refers to the “interrelations among the scored aspects of task 

and subtask performance” (Messick, 1995). Reliability, overall factor structure, and 

individual item response characteristics can be used to determine the internal structure. 
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Various methods can be used to quantify these aforementioned components. Assessment 

of internal structure is also essential for test refinement to reduce test length.  

Relations to Other Variables 
 

Are scores from other tests intended to measure the same/different construct 

related/unrelated with the present test (convergent/discriminant evidence)? Do the test 

scores improve following training (based on theoretical enhancement of the construct) or 

change based on a length of time purported to influence the construct? Are there 

differences/similarities in test scores between groups or individuals (i.e., athletes, 

physical therapists, etc.) that the construct would predict? Answering these questions is 

part of a thorough evaluation of construct validity.   

Another facet of this category is predictive evidence (also sometimes called 

criterion or concurrent validity). An idealized example would be providing evidence that 

skilled performers (as identified through a test), who later screened individuals and 

made intervention recommendations (i.e., training), reduced ACL injury rates as 

compared to control conditions.   

Consequences 
 

Anticipated beneficial and detrimental consequences should be addressed. 

Because unintended consequences cannot be initially determined, they should be 

assessed in the future. Potential sources of invalidity such as construct 

underrepresentation or construct-irrelevant variance should be investigated (Messick, 

1990). Finally, classification cut-points should be characterized and justified. A specific 

example for a test of ACL injury risk estimation skill would be if someone was found to 

be skilled, went on to assess individuals but their assessment was wrong and high-risk 

individuals were not correctly identified.  ACL injuries are complex and multifactoral, 
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thus knowing risk with 100% certainty is unlikely. Interactions among various risk 

factors is currently unknown, therefore by only assessing one risk factor (movement 

abnormalities) there is a possibility of bias and under diagnosis, which are issues that 

should be clearly conveyed with the test results (e.g., this is a research instrument that is 

validated for use in research settings—it is not currently validated as a clinical 

assessment of risk). The utility of screening tests should also be characterized and 

quantified by understanding the associated costs due to misclassification and any other 

ethical issues that may be of concern (e.g., what kind of detrimental effect could poor 

performance have on a participant’s career—does the potential benefit outweigh the 

potential harms).   

Foster and Cone (1995) stated, “Science rests on the adequacy of its measurement. 

Poor measures provide a weak foundation for research and clinical endeavors.” The 

cumulative evidence from psychometric theories and the five factors (i.e., content, 

response process, internal structure, relations to other variables and consequences) 

provides a substantial base for assessing the adequacy of the interpretations of test 

scores, and increasing the likelihood that test scores are thoroughly valid, robust, ethical, 

and reliable. The next section will describe the current evidence and limitations for 

expertise in the context of ACL injury risk estimation. 

Estimating ACL Injury Risk 

Skill Evidence 
 

Currently, no test/method has been developed to directly assess observational 

ACL injury risk estimating ability. Previous research has, however, compared 

observational diagnosis performance with 2D and 3D biomechanical variables purported 

to assess ACL injury risk. Specifically, four studies used various experimental approaches 
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to examine the accuracy and consistency of observational diagnosis of the drop vertical 

jump and will be, hereafter, discussed.  

Subjective judgments of frontal plane knee control during live drop vertical 

jumps were compared with 2D frontal plane knee angle (Stensrud et al., 2010). One 

observer assessed the drop jump performance of 186 athletes on a three-point scale (0 = 

good performance; 1 = reduced performance; and 2 = poor performance) based on the 

amount of frontal plane (i.e., medial/lateral) knee motion.  Judgment test-retest 

reliability was also assessed approximately 30 days later. Subjective classification 

accuracy was compared to biomechanical measurement (2D frontal plane knee valgus 

angle) using area under the receiver operating characteristic (ROC) curve (AUC).  

Results revealed an average AUC measure of .83 (95% confidence intervals of .77-.89). 

The average global accuracy measurement (.83) is considered ‘good’ according to the 

traditional academic point system and similar to the current clinical model (ACL 

nomogram) for ACL injury risk estimation, which displayed an AUC of .85, albeit 

predicting high knee abduction moment (Myer et al., 2010b).  The observers test-retest 

Kappa value was .90. Kappa is a measure of reliability not agreement, thus the requisite 

level of intra-rater agreement or judgment consistency is not clear. The criterion, 2D 

frontal plane knee valgus angle, has been shown to be correlated with knee abduction 

moment with a large effect size (r = .59) (Mizner et al., 2012). Thus, the results revealed 

by Stensrud and colleagues (2010) provided initial indirect evidence of skilled 

performance during observational ACL injury risk estimation. Subjective judgments of 

frontal plane knee control during live drop vertical jumps were also compared with 3D 

knee abduction angle and moment (Nilstad et al., 2014). 

Using similar stimuli (i.e., live drop vertical jumps) and the same subjective 

rating system as Stensrud et al. (2010), Nilstad et al. (2014) assessed the judgment 
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accuracy of three physiotherapists using 3D biomechanical measurement of knee 

abduction angle and moment as the criteria.  The raters exhibited AUC values 

between .85 and .89 when compared to 3D knee abduction angle and AUC values 

between .56 and .57 when compared to 3D knee abduction moment. Percent agreement 

ranged from 70-90% and no statistical differences were found between raters, suggesting 

good inter-rater agreement. The low judgment accuracy when compared to 3D knee 

abduction moment (i.e., AUC .56 - .57) is justifiable as the normative relationship 

between 3D knee abduction angle and moment in this group was r = .04. Moreover, 

when asked to judge the amount of knee valgus (i.e., abduction) motion, 

physiotherapists exhibited accurate judgments when compared to 3D knee abduction 

angle, but inaccurate judgments when compared to 3D knee abduction moment. The 

raters were not asked to judge the amount of knee abduction moment (which was not 

related to angle), thus a direct comparison of judgments with knee abduction moment 

cannot be ascertained. This research does corroborate the evidence that raters can 

discriminate individuals with various amounts of 3D knee abduction angle with 

sufficient performance. In the following two studies, subjective judgment of frontal plane 

medial knee motion during the drop vertical jump was compared with 3D biomechanical 

and 2D video criteria.  

Three physiotherapists with 12 ± 3 years of clinical experience judged 40-frontal 

plane videotaped females (age ≈ 15 years) perform drop vertical jumps2 (Ekegren et al., 

2009). The observers were given the specific guidelines of: “If the patella moves inward 

and ends up medial to the first toe, rate the individual as high-risk,” or “If the patella 

lands in line with the first toe, rate the individual as low-risk.” The same judgments were 

                                                        
2 120 total video clips were shown, as the 40 individuals jumped three consecutive times 
and the observer had to make a summary judgment following the three jumps. 



www.manaraa.com

 

   15 

also reassessed two weeks later to determine test-retest reliability. An “expert” who was 

able to pause, decelerate, and rewind the videos initially assessed the risk level (i.e., was 

the patella medial to the first toe?). These “expert” ratings were then compared to 3D 

knee abduction motion (maximum-minimum angle) to determine the optimum cut-off 

for the “true” risk rating. Mean (across the three jumps) knee valgus motion greater than 

10.83 degrees was considered truly high-risk and below truly low-risk.  

All three physiotherapists performed similarly displaying a multi-rater kappa 

value of  .90 at time one and  .77 at time two. The best physiotherapist exhibited 

sensitivity and specificity values of 87 and 72%, respectively, indicating sufficient 

accuracy. This same physiotherapist displayed an agreement or reproducibility value of 

88% between sessions (Kappa value of  .75), indicating sufficient test-retest reliability. 

This study provides additional evidence for skilled performance during observational 

ACL injury risk estimation. There were, however, several limitations that may influence 

the generalization of results to ACL injury risk estimating ability and will be, hereafter, 

discussed. 

 First, the study instructions were to assess if the patella (knee) was medial to the 

first toe (from a frontal plane vantage point). The dichotomous variable, knee medial to 

the toe, has not been directly identified as a risk factor for ACL injury and may not be 

related to current biomechanical ACL risk factors (i.e., 3D knee abduction moment or 

angle). The assessment of 2D medial knee motion, which is theoretically related to knee 

medial to the toe, has a low correlation with 3D knee abduction moment (r (18) = .20) 

and angle (r (18) = .18) (Pilot data). Similarly, Whatman et al. (2012) revealed that knee 

medial to the toe was unlikely related to 3D knee abduction angle (1.0 degree difference 

in means between true “patella medial to the second toe” and “patella not medial to the 

second toe” groups). These results are in contrast to Ekegren et al. (2009) where 3D knee 
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abduction motion (>10.83 degrees) predicted knee inside toe location with 87% 

sensitivity and ≈ 68% specificity (visually estimated with ROC curve). Differences in foot 

alignment and placement during landing, tibial rotation, as well as 3D marker placement 

may account for this discrepancy.  

Second, the observer responses were not directly compared to a criterion that 

assessed if the knee was actually medial to the toe. The ratings were compared and based 

upon an optimal cut-off produced by a ROC curve from “expert” rating of knee medial to 

the toe and 3D knee abduction motion. For instance, an individual could theoretically 

jump and land with their knee medial to their toe (judged as “high risk”) but display a 

valgus motion of less than 10.83 degrees (categorized as “truly low risk”) recording a 

“false alarm” when truly should have been a “hit.”3  

Third, a twenty-minute training video was presented to the physiotherapists prior 

to the judgments. This video provided background information about ACL injury risk 

and rating instructions. Lastly, the physiotherapists were allowed to practice with 

feedback and were able to discuss their practice judgments with other raters. These 

attempts to simplify the task (using sub-optimal criteria) and standardize rater training 

reduced task complexity and thus representativeness. Subjective judgments of knee 

location, relative to the toes, during videotaped drop vertical jumps were also compared 

in a larger sample of physiotherapists (Whatman, Hume, & Hing, 2013b) 

 Whatman et al. (2013b) conducted a similar study to that of Ekegren et al. (2009) 

but included a greater number of physiotherapist’s (N = 66), did not provide the raters 

with instructions, and used a younger mixed gender population (11 female and 12 male; 

                                                        
3 Pilot data from 20 demographically similar individuals (≈ 16 year old female athletes) 
revealed a knee medial to first toe (“high risk”) in 37 out of the 40 legs assessed, whereas 
abduction motion of greater than 10.83 degrees (“truly high risk”) was recorded in only 6 
out of the 40 legs, indicating apparent disagreement between these two criteria.  
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age ≈ 11 years). The raters were instructed to perform a dichotomous decision task in 

which they assessed if the patella moved medial to the second toe (yes = poor and no = 

good) during the performance of a drop vertical jump (similar to Ekegren et al. (2009), 

but the second toe was considered, not the first). The observer ratings were compared 

with the consensus ratings of three “experts” which used video analysis software to slow, 

pause, or replay the video as well as overlay lines to provide the “true” classification of 

“poor” or “good” (i.e., if the patella was truly medial to the second toe based on the same 

video footage). These expert consensus ratings were also compared to 3D and 2D 

quantitative motion analysis measures (to confirm a valid criterion). Criterion 

confirmation results indicated that individuals rated by the “expert consensus” as having 

a patella medial to the second toe were very likely to have increased 3D peak hip 

adduction (5.2 degree difference in means between truly “good” and “poor” groups), 

internal rotation (6.3 degree difference in means between truly “good” and “poor” 

groups) and 2D knee frontal plane projection angle (15.3 degree difference in means 

between truly “good” and “poor” groups). Expert ratings were likely not related to 3D 

knee abduction angle (1.0 degree difference in means between truly “good” and “poor” 

groups).  

For the primary decision tasks, the physiotherapist ratings demonstrated 

sensitivity and specificity interquartile range (IQR) values of 61-81 and 71-96%, 

respectively. Percent agreement and agreement coefficient (similar to Kappa and 

described by Gwet (2012)) within raters was 79% and .60, respectively. The authors also 

analyzed judgment accuracy in relation to the years of experience. The diagnostic odds 

ratio, a collective indicator of performance (Glas, Lijmer, Prins, Bonsel, & Bossuyt, 2003), 

revealed that performance was likely not different between physiotherapists with less 

than 5 years and 10-14 years of experience. However, physiotherapists with greater than 
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14 years of experience likely attained higher levels of performance compared to 

physiotherapists with 5-9 years (diagnostic odds ratio 3 times better). Additionally, a 

postgraduate qualification did not improve rating performance. Overall, this study 

provided evidence of individual differences in judgment accuracy and also indicates 

superior performance is attainable (albeit using a non-ideal criterion or judgment task).   
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Summary 
 

In addition to the limitations associated with criterion choice and judgment task 

instructions, three of the aforementioned studies used a limited number of raters (one 

observer in Stensrud et al. (2010), three observers in Nilstad et al. (2014) and Ekegren et 

al. (2009)) limiting the assessment of individual differences in ability. When a larger 

sample of observers were studied by Whatman et al. (2013b), initial evidence for skill-

based differences in observational movement diagnosis performance emerged, but 

generalizations to ACL injury risk estimation are limited due to the criterion/judgment 

task (knee medial to the toe) and representativeness of stimuli (i.e., individuals ≈ 11 

years of age are not at greatest risk for ACL injury). Moreover, all of these studies utilized 

physio- or physical therapists; accordingly, results cannot be generalized to other 

individuals who would benefit from assessing ACL injury risk including orthopedic 

doctors, sport coaches, strength & conditioning coaches, athletes, and parents of athletes.  

In summary, this cumulative body of evidence suggests individuals may have the 

capacity to accurately assess ACL injury risk by simple observation. However, limitations 

need to be addressed and a systematic approach for assessing ACL risk estimation skill 

must be developed.  

Despite the lack of direct evidence for superior performance in observational ACL 

injury risk estimation, it would be beneficial to discuss the possible factors influencing 

performance.  Herbert Simon, a Nobel Laureate, developed an analogy of behavior (or 

performance): “Human rational behavior (and the rational behavior of all physical 

symbol systems) is shaped by a scissors whose two blades are the structure of task 

environments and the computational capabilities of the actor” (Simon (1990), p. 7). Thus, 

one must understand the interacting system (person, process, and environment) to 

better understand why and when performance is sufficient.  
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Environmental Factors 
 

Critical features must first be identified in order for injury risk to be assessed or 

movement analyzed. For example, the biomechanical risk factors for ACL injury are knee 

abduction moment and knee abduction angles (Hewett et al., 2005), with knee abduction 

moment being the best predictor. These variables may be observable (angles, relative 

position, etc.) or inferred (moments, muscle activation, etc.) from other visible variables. 

Observer inaccuracy of various walking and running/cutting variables has been 

documented and varies considerably by variable type (Krosshaug et al., 2007a; Williams, 

Morris, Schache, & McCrory, 2009). Spatio-temporal variables such as step length, 

stance duration, and cadence during walking were judged with higher accuracy than 

kinematic/kinetic variables such as joint angles and power generation (Cohen’s d = 1.81) 

(Williams et al., 2009). Similar results were found during a running/cutting movement 

where speed variables resulted in lower judgment errors compared to joint angle 

assessment (Krosshaug et al., 2007a). For these studies, the raters assessed one variable 

at a time, thus the interactive effect of the number of variables on judgment accuracy 

could not be assessed. However, if multiple variables are observed, to the extent these 

variables need to be integrated to make a judgment, there may be a greater demand on 

short term memory and perceptual dynamics, which could influence performance (Bays 

& Husain, 2008). Specifically, performance has been shown to decrease in environments’ 

with large number of cues (Karelaia & Hogarth, 2008). In general, these results indicate 

that the type of variable dictates the observation rating accuracy with a trend towards 

greater accuracy when considering less abstract variables.  

A summary of the variables used to estimate ACL injury risk (knee abduction 

moment), their respective ecological validities, and cue utilization profiles are located in 
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Figure 1. The lens model, developed by Egon Brunswik, is a conceptual framework for 

understanding “achievement” or judgment performance by comparing the relationship 

between the human and an idealized (normative) judgment process (Brunswik, 1956; 

Gigerenzer & Kurz, 2001; Wigton, 2008). The judge (left side in Figure 1) uses “proximal” 

variables or cues in the uncertain environment to infer the current state (in this case, 

ACL injury risk status). These cues serve as surrogates for the actual state just as 

variables serve as predictors in a regression model (this metaphor is, however, 

psychologically implausible as humans do not optimize like statistical models 

(Gigerenzer, 1991)). The ability of the judge to correctly assess these cues (which are 

compared to an objective criterion) is considered the utilization coefficient. There often 

exist cues that are related or correlated with one another (inter-cue redundancy or 

vicarious functioning). Thus, the judge must choose the cue(s) that relate or correlate 

best with the current state. The relationships between the cues and the actual state are 

considered by Brunswik to be the ecological validities.  As Figure 1 suggests, achievement 

of ACL injury risk estimation has not been directly assessed by one single study. 

Summarizing the literature from this conceptual framework can lead to significant 

insights.  



www.manaraa.com

  22

 

 
Fi

gu
re

 1
. L

en
s 

M
od

el
 fo

r 
A

ss
es

si
ng

 A
C

L 
In

ju
ry

 R
is

k 

N
ot

e.
 S

N
-R

 =
 S

en
si

ti
vi

ty
 R

an
ge

; S
P-

R
 =

 S
pe

ci
fic

it
y 

R
an

ge
; S

N
-I

Q
R

 =
 S

en
si

ti
vi

ty
 In

te
r-

qu
ar

til
e 

R
an

ge
; S

P-
IQ

R
 =

 S
pe

ci
fic

it
y 

In
te

r-
qu

ar
ti

le
 R

an
ge

; A
U

C
-R

 =
 A

re
a 

U
nd

er
 R

O
C

 c
ur

ve
 

R
an

ge
; A

U
C

 =
 A

re
a 

U
nd

er
 R

O
C

; *
(P

at
el

la
 m

ed
ia

l t
o 

th
e 

to
e;

 2
pt

 S
ca

le
);

 *
*(

K
ne

e 
V

al
gu

s 
M

ot
io

n/
St

ab
ili

ty
; 3

pt
 S

ca
le

);
 1 E

ke
gr

en
 e

t a
l.,

 2
00

9 
(n

 =
 4

0 
m

ea
su

re
m

en
ts

; N
 =

 3
 J

ud
ge

s)
; 

2 W
ha

tm
an

, H
um

e 
&

 H
in

g,
 2

01
3 

(n
 =

 2
3 

m
ea

su
re

m
en

ts
; n

 =
 6

6 
Ju

dg
es

);
 3 N

ils
ta

d 
et

 a
l.,

 2
01

4 
(n

 =
 6

0 
m

ea
su

re
m

en
ts

; N
 =

 3
 J

ud
ge

s)
; 4 S

te
ns

ru
d 

et
 a

l.,
 2

01
0 

(n
 =

18
6 

m
ea

su
re

m
en

t;
 n

=
 1

 
Ju

dg
e)

; 5 U
np

ub
lis

he
d 

da
ta

 (n
 =

 1
00

 m
ea

su
re

m
en

ts
);

 6 K
ri

st
ia

ns
lu

nd
 e

t a
l.,

 2
01

3 
(n

 =
 1

20
 m

ea
su

re
m

en
ts

);
 7 M

iz
ne

r 
et

 a
l.,

 2
01

2 
(n

 =
 3

6 
m

ea
su

re
m

en
ts

)  
 

Ju
d

g
m

en
t 

**
2D

 F
ro

nt
al

 P
la

ne
 

K
ne

e 
C

on
tr

ol
  

*2
D

 M
ed

ia
l  

K
ne

e 
M

ot
io

n 
 

H
um

an
 

P
ro

xi
m

a
l S

u
b

je
ct

iv
e 

C
u

es
 

U
ti

li
za

ti
on

 C
oe

ff
ic

ie
n

t 

SN
-R

 =
 6

7-
87

%
, S

P-
R

 =
 6

0-
72

%
1 ; 

SN
-I

Q
R

 =
 6

1-
81

%
, S

P-
IQ

R
 =

 7
1-

96
%

2  

A
U

C
-R

 =
 .8

5-
.8

93 

AU
C 

= 
.8

3
4  

??
? 

 

E
co

lo
g

ic
a

l V
a

li
d

it
ie

s 

E
nv

ir
on

m
en

t 

O
b

je
ct

iv
e 

C
ri

te
ri

on
 

2D
 M

ed
ia

l P
at

el
la

 
D

is
ta

nc
e 

3D
 K

ne
e 

A
bd

uc
ti

on
 A

ng
le

 

2D
 K

ne
e 

A
bd

uc
ti

on
 

A
ng

le
 

r =
 .5

97
 

r 
=

 .3
85 ;

  
r 

=
 .0

43 ;
 

ρ 
=

 .5
16  

r =
 .1

2
5  

r = .387 r = .145 

A
ch

ie
ve

m
en

t 

A
C

L
 I

n
ju

ry
 R

is
k 

(K
n

ee
 A

bd
u

ct
io

n
 

M
om

en
t)

 



www.manaraa.com

 

   23 

The cue utilizations and ecological validities can provide information regarding 

the appropriate or optimal cues. Specifically, judging 2D medial knee motion yields high 

utilization coefficients, but low inter-correlations and ecological validities would suggest 

that this cue/variable might not be the best estimator of ACL injury risk. Frontal plane 

knee control (as assessed by Stensrud et al. (2010) and Nilstad et al. (2014)) also yields 

high utilization coefficients and equivocal ecological validities (as only one study 

concurrently assessed ecological validity yielding an r value of .04 suggesting no 

relationship with ACL injury risk). Two-dimensional knee abduction angle seems to be a 

variable with high ecological validity but more studies need to confirm this as only 36 

subjects were investigated. By asking participants to rate the ACL injury risk of 

individuals, achievement can be directly assessed. Also, cognitive tasks analysis methods 

(verbal reports/eye-tracking) can provide information about the proximal cues used. 

Thus, there likely exist other cues, which observers will use to determine injury risk 

status (i.e., landing stiffness, height, weight etc.). This information can provide insight 

into the development of decision support tools or training systems to enhance 

performance. Further research is needed to elucidate the effect of the number of 

observed variables on judgment performance as reliance on fewer cues may provide 

more robust predictive performance, particularly in the case of co-linear cues 

(Gigerenzer & Kurz, 2001; Gigerenzer & Todd, 1999).  The human visual system has 

limitations for detecting/recognizing visual stimuli in the environment. Other 

environmental factors influencing observational movement diagnosis include movement 

complexity and viewing angle/distance. 

Movement speed will influence the perception of various variables/critical 

features during movement analysis. Observers were more accurate when rating static 
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knee angle (2-9 degree error) during jumping compared to real time dynamic assessment 

(20-30 degree error) (Knudson & Morrison, 2000). Additionally, step length estimation 

error during walking increased at faster walking speeds (Stuberg, Straw, & Devine, 1990). 

Judgment accuracy was higher for assessing frontal plane knee motion during a slow 

small knee bend task (Sensitivity = 88%; Specificity = 85%) compared to a fast drop 

vertical jump (Sensitivity = 70%; Specificity = 79%)(Whatman et al., 2013b). In general, 

the faster the movement the less accurate one will be in identifying critical features. In 

addition to movement speed, viewing angle or vantage point influences judgment 

accuracy. 

If the majority of the movement occurs in one plane of motion (i.e., bicep curl), 

the optimal viewing location for assessment is at a right angle to this plane (i.e., side 

view). However, out of plane viewing (i.e., perpendicular to the plane of motion) may be 

more suitable for error detection since relative motion from this vantage point should be 

minimal. Therefore, movements (i.e., errors) occurring in the perpendicular plane (from 

which the motion is occurring) may be easier to detect. As the viewing angle deviates 

from this optimal location, judgment error increases (Plessner & Schallies, 2005). If the 

movement occurs in many planes of motion the optimal viewing angle remains equivocal 

and likely leads to judgment errors. Substantial errors (≈1-28 degrees) and 

inconsistencies between observers were found between visual ratings of joint angles 

during a multi-planer running/cutting motion (Krosshaug et al., 2007a). Training only 

resulted in small changes to these visual ratings. In conclusion, movement and critical 

feature (cue) type must be considered when using observational methods to diagnose 

movement. Less abstract variables in addition to slow and uni-planer movements seem 

to provide an environment that fosters more accurate movement diagnosis.  
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The description of the environment is necessary, as it will dictate judgment 

performance. Kahneman and Klein (2009) stated: “If an environment provides valid 

cues and good feedback, skill and expert intuition will eventually develop in individuals 

of sufficient talent.” However, degree of judgment performance can vary with identical 

environmental structure. Performance differences under similar environments, often 

studied using the expert-performance approach, describe the perceptual-cognitive 

characteristics of the observer and are also important when determining expertise 

mechanisms in judgment and decision-making.    

Perceptual-Cognitive Factors 
 

In complex, dynamic environments, such as observational movement diagnosis, 

cognitive processing must occur to acquire and integrate environmental cues in order to 

determine the correct diagnosis/decision. Cognitive process theories of diagnosis or 

decision-making under uncertainty aim to explain how and why individuals make 

decisions. Theories or models of decision-making include Long-Term Working Memory 

Theory (Ericsson & Kintsch, 1995), Encapsulation Theory (Boshuizen & Schmidt, 1992), 

Holistic Model of Image Perception (Kundel, Nodine, Conant, & Weinstein, 2007), 

Information Reduction Hypothesis (Haider & Frensch, 1999), Recognition Primed 

Decision Making (Klein, 1997), Adaptive Control of Thought-Rational (Anderson et al., 

2004), Cognitive Load Theory (Sweller, 1994), Cognitive Flexibility Theory (Spiro, 

Feltovich, Jacobson, & Coulson, 1991), Parallel Constraint Satisfaction Models (Herbig & 

Glöckner, 2009; Simon, Krawczyk, & Holyoak, 2004; Simon, Snow, & Read, 2004) and 

Cognitive Niches (Gigerenzer & Todd, 1999; Marewski & Schooler, 2011). These theories 

examine the cues/information utilized, and how this information is integrated in order to 

make an appropriate decision based on the goals of the task. Thus, the aims of the 
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following sections are to address theoretical mechanisms that may allow some decision 

makers to perform better than others given the same environmental constraints. First, 

the relationship between domain-general perceptual-cognitive factors and skilled 

performance will be summarized. Second, the relationship between domain-specific 

perceptual-cognitive processes during decision-making and skilled performance will be 

summarized.  

Domain-General Visual-Spatial Ability  
 
 The ability to recognize configurations (i.e., movement patterns) would 

hypothetically be important for observational movement diagnosis. General tests of 

spatial abilities have been used to quantify the ability to imagine and mentally transform 

spatial information or recognize spatial configurations (Uttal et al., 2013). A clear and 

agreed upon definition of spatial ability has yet to be determined, but recent work by 

Newcombe and Shipley (2012) have described a typology of spatial skills, which includes 

a 2 x 2 classification table including intrinsic vs. extrinsic and dynamic vs. static (see 

Table 1, p.355 of Uttal et al. (2013) for description, measurement methods and relation 

to defined categories). In short, intrinsic and static describes perceiving objects among 

distracting background information and could be measured by Embedded Figures tasks, 

flexibility of closure, and mazes. Intrinsic and dynamic describes visualizing objects into 

more complex configurations or mentally transforming objects and could be measured 

by Mental Rotation Test, Purdue Spatial Visualization Test, and the like. Extrinsic and 

static describes understanding abstract spatial principles and could be measured by 

Water-Level, Rod and Frame Test, and the like. Finally, extrinsic and dynamic describes 

visualizing an environment in its entirety from a different position and could be 

measured by Piaget’s Three Mountains Task and Guilford-Zimmerman spatial 
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orientation. Spatial abilities have been shown to predict achievement in Science, 

Technology, Engineering, and Mathematics fields even when controlling for math and 

verbal skills (Wai, Lubinski, & Benbow, 2009). Spatial ability (all types) can be improved 

with training (Hedge’s g = 0.47) and transfers to other tasks (Hedge’s g = 0.47) as 

indicated by a recent meta-analysis (Uttal et al., 2013). Intrinsic-static/dynamic spatial 

skills have also been postulated to be useful for analysis of movement (Knudson & 

Morrison, 2000; Morrison & Frederick, 1998).  

The relationship between observational movement diagnosis skill and general 

spatial ability has been investigated. Specifically, movement analysis skill (assessed by 

the Movement Analysis Test) and two measures of spatial ability (Mental Rotation Test 

and Group Embedded Figures test) was assessed in 36 undergraduate physical education 

students (Morrison & Frederick, 1998). Good mental rotation ability was hypothesized to 

be beneficial for rotating the observed movement to gain relevant information from 

different vantage points. Disembedding ability was hypothesized to help make decisions 

about the total movement by examining only parts (i.e., knee or hip movement). The 

Movement Analysis Test required the respondents to view videos of children performing 

movements and to indicate on an answer sheet which components were not performed 

in an adequate fashion (the criterion for the correct responses were based on subjective 

assessment by domain “experts”). Test-retest reliability was found to be .72.  

Additionally, the effect of a training intervention was investigated. Training significantly 

improved movement analysis skill (Cohen’s d = 1.07). A linear regression was performed 

and found that scores on the initial Movement Analysis Test (r = .42) and Group 

Embedded Figures Test (r = .33) were significant predictors of post-test Movement 

Analysis Test scores (r = .54), while scores on the Mental Rotation Test were not a 

significant predictor (r = .05). Interestingly, intrinsic and dynamic spatial ability was not 
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predictive of movement analysis skill whereas intrinsic and static spatial ability was. The 

error detection in the Movement Analysis Test may not have required a “skill” for mental 

rotating but rather simply detecting stimuli among distracters or relations among objects, 

which is characterized by intrinsic and static (i.e., Group Embedded Figures Test) or 

extrinsic and dynamic spatial abilities, respectively.  

A similar study directly assessed the relationship between the Mental Rotation 

Test, Group Embedded Figures Test, and visual rating of countermovement jump depth 

in 43 undergraduate students (Knudson & Morrison, 2000).  Students rated the amount 

of knee flexion during the descent phase of the countermovement jump of 12-videotaped 

individuals (repeated five times) on a visual analog scale. The mean error in visual rating 

of the angles was 21.8 degrees with 95% confidence intervals between 14.4 and 29.3 

degrees. Video based knee angle assessment ability was not related to Mental Rotation 

Test (r = -.04) or Group Embedded Figures Test (r = -.13).  

In line with the previous study by Morrison and Frederick (1998), the Mental 

Rotation Test was not related to observational movement analysis performance.  

However, it was surprising not to see a stronger relationship between the Group 

Embedded Figures Test and assessment of knee angle. One explanation could be the 

differences in task demands between the Movement Analysis Test, and assessing knee 

angle. The former not only requires knowledge of the cues/errors to be detected but also 

that these cues can be perceived (cue utilization). Assessing knee angle, compared to 

detecting movement errors, would not require the same cognitive demands because the 

cue is known and thus seems to be a pure perceptual task. If using the classification 

system of Newcombe and Shipley (2012), assessing knee angle would require extrinsic 

and dynamic spatial abilities (which were not assessed). Assessing knee angle appeared 

to be perceptually difficult according to the high errors (mean of 21.8 degrees). If 
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assessing knee angle were a predominately visual spatial task it would be expected to 

have a better relationship between these spatial abilities tests. Interestingly, the Mental 

Rotation Test and Group Embedded Figures Test displayed a low correlation coefficient 

of r = .18.  In a similar demographic sample (135 female, 83 male, college aged: 22 ± 7.1 

yrs) Hegarty, Montello, Richardson, Ishikawa, and Lovelace (2006) found a moderate to 

large correlation (r = .31) between the Group Embedded Figures Test and the Mental 

Rotation Test.  

 This cumulative evidence, albeit with small sample sizes, provides initial 

evidence suggesting there tends to be small to trivial relations between some measures of 

spatial ability and observational movement analysis.  Future research should investigate 

the conditions under which these and other measures of spatial abilities (i.e., extrinsic 

and dynamic/static) are related to movement analysis especially in regards to ACL injury 

risk estimation.  

Domain-General Cognitive Ability  

Recent advances in statistical analysis techniques (i.e., Meta- and factor analyses), 

and studies of expertise mechanisms have lead to a better understanding of the 

relationship between domain-general cognitive abilities and performance. General 

cognitive ability is a “construct” with the definition dependent on an adopted theory. 

According to Schmidt (2011), domain-general cognitive ability is defined and measured 

as: “the underlying general capacity that causes performance on all mental tasks to be 

positively intercorrelated, because it is a (partial) cause of every aptitude,” and put 

simply “is the ability to learn.”  

Domain-general cognitive ability is, however, a theoretical construct that is 

measured indirectly by various specific domain-general cognitive abilities including 

verbal, spatial, quantitative, or technical skills. Wechsler’s Adult Intelligence Scale, 



www.manaraa.com

 

   30 

Wunderlich Intelligence Test, and the Armed Services Vocational Aptitude Battery are 

often used to assess individual differences in domain-general cognitive abilities. An 

extensive body of evidence including thousands of participants in a variety of work 

domains has indicated that domain-general cognitive ability tests predict performance 

(e.g., supervisory ratings) with validity coefficients ranging from .23 to .58, with strength 

of validity increasing (but plateauing) with job complexity (Schmidt & Hunter, 2004). 

The predictive validity coefficients have, however, been shown to decrease over time with 

an average decrement of -0.45 (corrected for range restriction, reliability and outliers) 

(Hulin, Henry, & Noon, 1990). Thus, tests of domain-general cognitive abilities likely 

provide good initial predictors of performance in the absence of domain-specific skill. 

Additionally, domain-general cognitive abilities have been shown to improve with 

training (Buschkuehl & Jaeggi, 2010; Jaeggi, Buschkuehl, Jonides, & Perrig, 2008; 

Jaeggi, Buschkuehl, Jonides, & Shah, 2011). However, as domain-specific skill increases 

the predictive validity continues to decrease, such that in presence of high-levels of 

expertise, domain-general cognitive abilities lose all predictive power (Doll & Mayr, 

1987; Ericsson, 2013). 

Contemporary views on the nature of the relations between domain-general 

cognitive abilities and expertise present a much more complicated picture. First, general 

mental ability is a statistical (or psychometric) construct determined from factor analysis 

of various intelligence tests complicating interpretation. General intelligence is likely not 

a single underlying cognitive process or capacity, but is a product of mutually reinforcing 

abilities (Nisbett et al., 2012; van der Maas & Wagenmakers, 2005). Additionally, in a 

review on giftedness and expert performance, Ericsson, Roring, and Nandagopal (2007) 

stated: “… we have found no studies that have demonstrated that IQ is predictive of 
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achievement in domains where reliable, superior performance has been collected 

meeting our earlier criteria.”  

Research further shows that rather than primarily reflecting deep-seated 

differences in cognitive capacities, individual differences in domain-general cognitive 

abilities are often mediated by differences in simple task strategies and metacognitive 

dynamics (e.g., thinking about thinking).  For example, individuals who score higher on 

domain-general cognitive fluid intelligence and working memory tests often spend more 

time preparing for tasks (e.g., reading the instructions), more elaborately encode 

information, and deliberatively build richer cognitive representations in long-term 

memory that provide better monitoring and control during subsequent task performance 

(Baron, 1978, 2005; Cokely & Kelley, 2009; Cokely, Kelley, & Gilchrist, 2006; Ericsson & 

Kintsch, 1995; Ghazal, Cokely, & Garcia-Retamero, 2014; Hertzog & Robinson, 2005; 

Mitchum & Kelley, 2010; Sternberg, 1977; Vigneau, Caissie, & Bors, 2006; Ward, 

Ericsson, & Williams, 2012).  Some evidence also indicates that strategy differences in 

task performance related to domain-general cognitive abilities can be completely 

eliminated by simple training interventions and modifications of problem 

representations (Cokely et al., 2006; Garcia-Retamero & Cokely, 2013a, 2013b; Garcia

Retamero & Cokely, 2013; Hertzog & Robinson, 2005; McNamara & Scott, 2001; 

Nandagopal, Roring, Ericsson, & Taylor, 2010; Stanovich, 2012).  Evidence also indicates 

that individual differences in domain-general cognitive abilities are influenced by 

differences in motivation and persistence, which are strongly related to differences in 

overall achievement (Duckworth, Quinn, Lynam, Loeber, & Stouthamer-Loeber, 2011; 

Duckworth & Seligman, 2005).   

In summary, domain-general cognitive abilities may predict performance in 

lower ability individuals or novel tasks settings for a variety of reasons.  Nevertheless, 
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large domain-specific differences in verifiable expertise always reflect differences in 

acquired cognitive representations (e.g., complex changes in neurology and memory), 

which are mediated by deliberate practice activities.  Therefore, although a 

comprehensive evaluation of any new test should include comparative testing with some 

robust domain-general cognitive ability tests, it is unlikely that domain-general cognitive 

abilities will be related to the anticipated domain-specific differences in expert 

observational movement diagnosis.  

Domain-Specific Cue Acquisition/Integration     

During observational movement analysis, where information is abundant, the 

judge must find information that is most predictive of the actual state. In Brunswikian 

terms, accurate judgment requires the appropriate utilization of perceptual cues (i.e., 

high utilization coefficient) with high ecological validities. Time and cognitive 

characteristics constrain the judge, requiring decision-making based on limited 

information. Given similar environmental structure and task goals, one open question is: 

What are the individual differences in type and number of cues searched for and utilized 

between levels of expertise? What are the individual differences between the 

interpretation/integration of the acquired cues at different levels of skill?  

Verbal protocol analysis during observational movement analysis can provide 

information regarding cue usage and performance. A process model of motor skill 

(movement) diagnosis was developed and based on verbal protocol analysis of expert 

and novice shot put coaches, examining their errors during the shot put movement 

(Pinheiro & Simon, 1992). Experts detected and diagnosed 40% of the present errors 

during the first viewing and 44% on the successive viewing, whereas, novices detected 

13% of the errors on the first viewing and 7% on the successive viewing. The authors 

analyzed the verbal report data based on the information-processing framework that 
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included three stages: cue acquisition, cue interpretation and diagnostic decision-making. 

Though not discrete stages, this model provided a framework for investigating 

differences in cognitive processes in skill level of observational movement diagnosis. 

With regards to cue acquisition, experts mentioned an average of 12 cues for errors in 

performance, while novices mentioned an average of seven. Experts also made an 

average of six interpretations/diagnostic decisions, whereas novices made an average of 

two. When analyzing the motion of a shot putter (to detect errors in movement 

technique), the superior performance of experts’ is mediated by the acquisition of more 

cues and the use of a greater number of interpretations. Expertise differences, during 

observational movement analysis have been assessed during other movements such as 

swimming. 

Expertise differences in observational analysis of the freestyle stroke during 

swimming have also been assessed using verbal report techniques (Leas & Chi, 1993). 

Two “experts” (recognized by the U.S. Swim Association and had 12 years of coaching 

experience) and two novices (two years of coaching experience) viewed underwater 

videotapes of four swimmers. The coaches were asked to view and diagnose/rate the 

swimmers technique on a scale ranging from 1 (bad) to 10 (good) while “thinking aloud.”  

Experts ratings were more accurate compared to novices when using swimming time as 

the criterion for comparison (experts: r = .96; novices r = .73); however, these 

correlations were only based on four data points, thus the results should be interpreted 

with caution. Large variation existed in the verbalized features during the diagnosis task. 

Specifically, experts’ diagnosis commonly identified “process” type features such as 

“wide pull” or “stroke unbalanced,” whereas, novices’ commonly identified specific body 

parts in a “static” context such as “elbow bent extension.” Experts also verbalized a 

greater number of cause and effect, and prescription type statements. In fact novices’ did 
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not provide any cause/effect or prescriptive statements. In summary, experts identified 

features which were more “second-ordered” and “dynamic” which was similar to the 

seminal work of experts solving physics problems (Chi, Feltovich, & Glaser, 1981). If the 

task is, however, to diagnosis/classify the individual into a dichotomous (good or bad) or 

a relatively few number of categories, expertise differences in cognitive processes may 

not reflect these aforementioned differences. For example, experts may require fewer 

cues to make superior diagnostic decisions. 

Shanteau (1992) summarized the relationship between the amount of 

information used and expertise in a variety of judgment and decision-making tasks. The 

results of five studies comparing expert and novice information use in auditing, medical 

diagnosis, and livestock judging consistently revealed that expertise differences were not 

based on the number of cues but rather the type of cue used. In a majority of these 

studies, experts tended to use fewer cues than novices (may not have reached statistical 

significance due to small sample sizes; see Moxley, Ericsson, Charness, and Krampe 

(2012)). Even in the normative sense, models including fewer cues may perform better 

when predicting new data than models including a larger number of cues. Specifically, an 

inverse U-shaped relationship often exists between model complexity (number of 

parameters/information) and predictive power (Pitt, Myung, & Zhang, 2002). These 

results suggest that when investigating individual differences in skill and cue usage, 

studies need to be designed to allow for the assessment of both type (quality) and 

amount (quantity) of information used by skilled judges.  

Eye-tracking can also provide information regarding expertise differences in cue 

usage. A meta-analysis was conducted to investigate common expertise differences (819 

experts, 187 intermediates, and 893 novices) in eye-tracking metrics during the 

comprehension of visualizations across various domains (sport: N = 704; medicine: N = 
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101; transportation: N = 260; Other: N = 110) (Gegenfurtner, Lehtinen, & Säljö, 2011). 

Overall, experts were more accurate (r = .45) and responded quicker (r = -.38) than 

novices. Experts compared to non-experts had a similar number of overall fixations (r = 

-.04), more fixations on task-relevant areas (r = .53) of longer duration (r = .27), less 

fixations on task-redundant areas (r = -.31) of shorter duration (r = -.43), shorter times 

to first fixate on task-relevant areas (r = -.31), and longer saccade amplitudes (r = .30). 

In summary experts displayed efficient allocation of attention to critical/diagnostic 

information that was related to the level of expertise (for a similar review in the sporting 

context see Mann, Williams, Ward, and Janelle (2007)). This comprehensive synthesis of 

data corroborates evidence that supports the importance of information type over 

amount when assessing expertise differences in decision-making. These eye-tracking 

measurements, however, do not describe the causal mechanisms or why these expertise 

differences are present. A closer look at content and organizational differences in 

knowledge may help elucidate this issue.  

Domain-Specific Knowledge 

Through the meta-analytic work of Schmidt and Hunter, job knowledge tests 

have been shown to predict job performance with substantially large correlations (r 

values ranging from .48 to .61) (Schmidt & Hunter, 2004; Schmidt & Hunter, 1998). 

Additionally, their path analysis work has shown that job knowledge is largely the reason 

general mental ability tests predict job performance so well (Schmidt, Hunter, & 

Outerbridge, 1986). Job type is, however, a moderator for this relationship. This work 

was based on large amounts of data from various jobs but highlights the importance of 

job or domain-specific knowledge for performance.  

Domain-specific knowledge should be related to observational movement 

diagnosis skill. Ste-Marie (1999) investigated the ability of gymnastic judges to anticipate 
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upcoming gymnastic elements using videotaped performances. Additionally, knowledge 

base was assessed by asking the judges to generate a list of potential gymnastic elements 

following the stoppage as well as the potential errors using the International Gymnastic 

Federation Code of Points (IGFCP) book as the standard for comparison.  Twelve 

“experts” (17 years of experience and greater than a Level 5 certification) and twelve 

novices (two years of experience and less than Level 2 certification) participated in the 

study. Experts were more accurate at anticipating the gymnastic elements (39.5 vs. 

28.3% correct). The correct anticipation was related to better scoring performance of the 

gymnastic element. Thus, the author’s classification of expertise level seems to be 

justified according to these performance outcomes. Experts were more accurate 

concerning IGFCP information (error identification, symbol and level of difficulty) than 

were novices (84 vs. 52% correct). Experts were also able to generate a greater number of 

alternatives (gymnastic elements and errors therein). These findings suggest domain-

specific knowledge (depth and breadth) contribute to expertise differences in judgments. 

Using observational movement analysis of the freestyle swimming stroke, Leas 

and Chi (1993) also examined the expertise differences in domain-specific knowledge 

and structure. In addition to the mentioned diagnosis tasks (see paragraph three in cue 

acquisition/interpretation section), the coaches were asked to describe the “ideal” or 

“prototype” freestyle stroke technique, which was then analyzed based on content and 

connectedness. The analysis of the verbalizations of the ideal stroke technique revealed 

that experts identified the four main stroke components, which were described in 

swimming technical documents, whereas novices only identified two. Additionally, 

experts verbalized an average of 29 components, which composed 70% of the known 

feature categories, while novices verbalized 11, which composed 34%. Connectedness was 

assessed by analyzing the prototype data in regards to the number and length of their 



www.manaraa.com

 

   37

reasoning chains (causal utterances). Experts’ chain number and length were 

significantly larger than novices’. Despite the low sample size in participants and stimuli, 

experts’ knowledge about the critical features for technique analysis seemed to have 

greater breadth and connectedness compared to the novices.  

Studies investigating the mechanisms of the expertise difference in observational 

movement analysis highlight the importance of possessing adequate domain-specific 

knowledge but this knowledge is also structured or organized in a way which enhances 

decision-making accuracy during complex, time constrained tasks. Elaborate memory 

structures likely allow an expert movement analyst to create an adaptable prototype 

model of expected performance that facilitates accurate detection, interpretation, and 

diagnosis of movement abnormalities (Pinheiro & Simon, 1992). The classic study by 

Chase and Simon (1973) revealed that perceptual expertise in chess and many other 

domains (Ericsson & Lehmann, 1996) is mediated by superior encoding of representative 

structured information and not larger short-term memory capacity. These perceived 

patterns or “chunks” are similar in number to that of novices but are larger and more 

detailed/complex (Chase & Simon, 1973). This difference in the structure and complexity 

of memory representations allows experts to attend to the task relevant information 

while ignoring task irrelevant cues/areas, building and evaluating more diagnostic 

hypotheses, and better anticipating actions/events (Balslev, 2011; Ericsson & Lehmann, 

1996; Gegenfurtner et al., 2011; Mann et al., 2007). These characteristics of expert 

performance have been shown to be developed through deliberate practice (see Ericsson, 

Krampe, and Tesch-Romer (1993) for in depth discussion). One must also be aware of 

potential biases, as previous experience may negatively influence subsequent judgments 

even in highly skilled individuals.   
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Biases   

Two candidate biases that may affect movement judgment/diagnosis are 

sequential and/or prior processing effects. In sequential effects, a preceding judgment 

influences the actual judgment in a systematic way, and have been observed among 

experienced gymnastics judges (Damisch, Mussweiler, & Plessner, 2006). Specifically, a 

correlation of r = .30 was found between the target athletes’ judgments and the 

judgments of the previous athletes’ performance using data from the 2004 Olympic 

Games (N = 1,307).  Judgments of the second (r = .26) and third (r = .18) judged athletes 

were also correlated to the target judgment. These results suggest that the magnitude of 

the sequential effect is lessened as the number of judgments between target assessment 

increases. Prior processing effects or previous knowledge of the performance have also 

been documented in gymnastic judging. These effects can be beneficial or detrimental 

depending on the perceived performance. For example, if the judges saw the same move, 

they scored the move more accurately (Mean accuracy = 76.2%) than when scoring a new 

move (Mean accuracy = 72.2%) or if a movement was different to the target performance 

(Mean accuracy = 68.4%) (Ste-Marie & Lee, 1991). Expertise (as assessed by accuracy of 

form error detection) did not appear to reduce this bias.  These somewhat acute 

perceptual-cognitive biases may have consequences when diagnosing injury risk status 

(via observational movement diagnosis), and therefore should be considered.      

Problem Statements 

This review has highlighted the characteristics of and assessment methods for 

skilled or expert performance and potential cognitive mechanisms that may give rise to 

expertise in the context of observational movement analysis. There is, however, a paucity 

of research directly investigating observational assessment of ACL injury risk estimation 

ability. Previous research has demonstrated that physiotherapists possess the ability to 
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observationally assess specific variables purported to be associated with ACL injury risk. 

However, these variables have not been supported by evidence from longitudinal 

prospective studies of ACL injury risk. Additionally, the skill of observational injury risk 

estimation has not been assessed in other populations that may benefit from or 

commonly use this skill (i.e., coaches, athletes, parents, medical doctors). Similar to 

other “skills”, theoretically, one’s ACL injury risk estimation skill is likely a function of 

adequate domain-specific knowledge (i.e., knowing the function of the ACL and risk 

factors for injury), and deliberate practice assessing injury risk. Sports medicine 

practitioners (physical therapists, physiotherapists, athletic trainers, orthopedic doctors) 

likely possess the requisite domain-specific knowledge for ACL injury risk but may not 

obtain accurate feedback regarding their current level of skill. To date, ACL injury risk 

estimation feedback is unlikely, as one would have to see athletes drop jump 

performance prior to injury, follow-up on the injured athletes, and differentiate 

movement patterns between the injured and non-injured individuals (while correctly 

updating their “mental” representation of at risk individuals). Additionally, feedback can 

also be specified through performance assessment but is currently not formally available. 

It seems likely that practitioners may often screen for ACL injury risk. Yet, despite their 

wealth of knowledge about ACL injury risk factors, professionals may not be able to 

observe differences in risk level.  
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CHAPTER 2: STUDY 1- DEVELOPMENT OF THE ANTERIOR 
CRUCIATE LIGAMENT INJURY-RISK-ESTIMATION QUIZ  

(ACL-IQ) 
 

Introduction 

Study 1 was designed to begin to address two questions.  First, can some 

individuals more accurately estimate ACL injury risk based on observations of athletes’ 

drop vertical jump performance?  Second, given evidence of skill-based differences in 

observational diagnosis performance, can we improve assessment of skill differences 

using modern psychometric methods?  For ease of explication, the introduction and 

analysis of Study 1 will be divided into two parts.  Study 1A focuses on testing hypotheses 

about individual differences in risk estimation skill. Study 1B focuses on refining 

psychometric assessment of risk estimation skill. 

Study 1A: Individual Differences in Risk Estimation Skill 

Hypotheses 
 

1.) People working in field of exercise science will have greater understanding of the 

ACL (i.e., location, function, and risk factors) compared to less experienced 

individuals. 

2.) People working in field of exercise science will make more accurate and 

consistent ACL injury risk estimates compared to less experienced individuals.  

Methods/Procedures 

Risk Estimation  
 

Participants viewed brief videotaped clips of athletes performing a drop vertical 

jump and were asked to estimate the risk for future ACL injury on a 10-point scale (see 

Figure 2).  Actual ACL injury risk was calculated using biomechanical analysis of peak 
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knee abduction moment and peak knee abduction angle (Myer, Ford, Khoury, & Hewett, 

2011). The greater of the two values for both legs was used as the criterion.4  

 

 

Figure 2. Example Decision Task (Snapshots of Video Sequence)  
Note. 

 

Stimuli  
 

Young females participating in landing and cutting sports are at the greatest risk 

for ACL injury (Hewett, Zazulak, et al., 2012).  Accordingly, stimuli consisted of a sample 

of 20 video clips of female athletes performing a drop vertical jump. The athletes 

featured in the videos participated in landing and cutting sports and served as the 

participants for the development and validation of the clinical ACL nomogram (Myer, 

Ford, & Hewett, 2011) (M ± SD; age: 15.9 ± 1.3 years; height: 163.6 ± 9.9 cm; body mass: 

57 ± 12.1 kg).5 The athletes featured in the video stimuli were also demographically 

similar to individuals investigated in the initial prospective injury risk factor study (M ± 

SD; age: 16.0 ± 1.35 years; height: 165.9 ± 6.4; body mass: 60.3 ± 8.2 kg) (Hewett et al., 

                                                        
4 In the current study, analysis of test items shows that peak knee abduction moment 
and angle have a marginal, moderate correlation of r (18) = .35, p = .13.  
5 All individuals in the video clips signed a photo release form indicating use of their 
photo/video in mass media publications, internet, television or movie presentations. 
Despite the photo release, faces were pixilated to maintain anonymity.   
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2005). The 20 candidate video stimuli items also depict athletes who have a wide and 

representative range of injury risk values (from very low to very high).   

Participants  
 

A convenience sample of 213 individuals completed the study.  The sample 

included a group of 40-exercise science professionals (e.g., physical/physiotherapists, 

exercise science students, sports medicine researchers, and orthopedic doctors) recruited 

from the Norwegian School of Sport Sciences or nearby Physiotherapy clinics (i.e., the 

Exercise Science group). Two hundred additional participants from Amazon’s 

Mechanical Turk were also recruited as Mechanical Turk participants tend to be 

demographically diverse and closer to the demographics of the general U.S. population 

(i.e., the “General Population” group; see Paolacci, Chandler, and Ipeirotis (2010)). 

Twenty-seven Mechanical Turk participants did not complete the test or were missing a 

substantial amount of data. One individual from the Exercise Science group was an 

anesthesiologist and thus was moved into the General Population group. Three 

Mechanical Turk participants reported working in physical therapy or exercise science 

and thus were moved to the Exercise Science group.         

Study Procedures 
 

The study was fully computerized and hosted online. The testing of the 

convenience sample of potential exercise science professionals took place in a quiet room 

using a 61cm wide screen monitor with a resolution of 1920 x 1200 (Model: U2412M, 

Dell Computer Corporation, USA). The specific study setting for the Mechanical Turk 

participants cannot be discerned as the study material was distributed online and could 

be taken on any computer with Internet access. The study was not compatible with 

mobile devices thus limited to laptop or desktop computers. Once recruited, all 
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participants completed the entire study on the computer with no initial verbal 

instructions. Prior to the decision tasks participants were provided with brief written 

instructions. The instructions stated:  

Video clips will be presented following a 3 second countdown. You will only be 

able to view the clips once. After viewing the video clips you will be asked to 

answer 2 questions: First you will rate the athlete’s degree of risk for a future 

anterior cruciate ligament (ACL) injury. You will then be asked to rate your 

confidence in your chosen risk rating. 

Following two practice trials, 25 decision tasks (five of which were repeated items) were 

presented in randomized order. Following the decision tasks, domain-specific knowledge 

was measured using three questions related to ACL location, function, and injury risk 

factors. Finally, demographic information including age and profession were recorded.  

Results 

Group Demographics  
 

The Exercise Science group consisted of 17-college exercise science students, 13-

physio/physical-therapists, 4-sport medicine Ph.D.’s, 3-orthopeadic medical doctors, 3-

strength & conditioning coaches, and 2-administrators. The General Population group 

consisted of individuals with diverse occupations. The Exercise Science group was 

significantly younger compared to the General Population group (see Table 1).  

Domain-Specific Knowledge  

Domain-specific knowledge was assessed with three questions (i.e., Where is the 

ACL located? What is the function of the ACL? and What are the risk factors for ACL 

injury?). The location of the ACL was coded as one for correct and zero for incorrect. The 

ACL has two primary functions thus one point was awarded for each correct function. 
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Various risk factors exist for ACL injury that can be placed into four general categories 

including biomechanical, anatomic, intrinsic (hormone, genetics, cognitive function and 

previous injury), and extrinsic (Smith et al., 2012a, 2012b), thus one point was awarded 

for risk factors reported from any of these four categories. Overall, the Exercise Science 

group displayed greater domain-specific knowledge compared to the General Population 

group (see Table 1).  

Table 1. Age and Domain-Specific Knowledge of the Exercise Science and General 
Population Groups 
  Exercise Science   General Population    

Variable n M SD n M SD p Cohen's d 
Age 42 30.29 7.41 160 35.04 11.23 0.01 0.45 
ACL Knowledge 42 3.69 1.35 171 1.49 0.84 < .001 2.31 
Note. Maximum ACL knowledge points = 7. 

Relative Judgment Accuracy  

Relative accuracy metrics were used to assess agreement between estimated and 

actual ACL injury risk judgments. Analyses of relative accuracy provide information 

about the resolution of one’s judgment, emphasizing participants’ ability to discern the 

relative difference between higher and lower levels of risk, regardless of the absolute risk 

level (e.g., can participants correctly rank which test items depict higher versus lower 

levels of risk).  Because the judgment data were ordinal, a Spearman Rho rank 

correlation was calculated between risk estimates on the 10-point scale and 

biomechanical knee abduction moment criteria (RelAccMom) and angle criteria 

(RelAccAng) for the 20 video clips. This analysis assessed participants’ relative accuracy 

and describes the overall relationship between known ACL injury risk and subjective 

assessment, without providing a cut-off value or categorizing the video clips.  

 The Exercise Science group displayed greater relative accuracy compared to 

General Population when either knee abduction moment (RelAccMom) or angle 
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(RelAccAng) was used as criterion (Note: the greater negative value indicates higher 

relative accuracy) (see Table 2 for descriptive statistics and effect sizes). In aggregate, the 

General Population relative accuracy measures (using abduction moment and angle) 

were near 0, indicating a widespread inability to accurately estimate relative changes in 

injury risk status. On an individual level, the largest rank correlation between a single 

individual’s observational rating and knee abduction moment (RelAccMom) was ρ (18) = 

-.58, a strong relationship. Four-percent in the General Population group and 7% in the 

Exercise Science group displayed a statistically or marginally significant RelAccMom (ρ 

(18) < -.38, p < .10). On an individual level, the largest rank correlation between a single 

individual’s observational rating and knee abduction angle was ρ (18) = -.69, a strong 

relationship.  Twelve-percent in the General Population group and 57% in the Exercise 

Science group displayed statistically or marginally significant RelAccAng performance (ρ 

(18) < -.38, p < .10). The magnitude of relative accuracy was, however, larger for 

RelAccAng (Mean ρ (18) = -.41) compared to RelAccMom (Mean ρ (18) = -.18), for the 

Exercise Science group (t(42) = 13.25, p < .001, d = 0.77) but not different for the 

General Population group (t(171) = -1.14, p = .26, d = -0.14). Exercise Science individuals 

who displayed greater RelAccMom also displayed greater RelAccAng (r (40) = .66), 

providing convergent evidence that professionals working or studying in exercise science 

have some superior ability to visually estimate ACL injury risk. 
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Table 2. Performance Comparison Between Exercise Science and General Population 
Groups 
  Exercise Science   General Population     
Variable n M SD n M SD p Cohen’s d 

RelAccMom 42 -0.18 0.13 171 -0.10 0.19 0.01 0.47 
AbAccMom 42 2.42 0.35 171 2.40 0.51 0.79 0.05 
RelAccAng 42 -0.41 0.15 171 -0.08 0.25 < .001 1.46 
AbAccAng 42 2.35 0.40 171 2.50 0.57 0.10 0.28 
AbCon 42 0.83 0.45 171 1.15 0.78 0.01 0.45 
Note. RelAccMom = relative accuracy using knee abduction moment as criterion (ρ); 
AbAccMom = mean absolute error using knee abduction moment as criterion; 
RelAccAng = relative accuracy using knee abduction angle as criterion (ρ); AbAccAng = 
mean absolute error using knee abduction angle as criterion; AbCon = absolute 
consistency error 

Absolute Judgment Accuracy  

Absolute accuracy metrics (i.e., judgment calibration) were also used to assess 

agreement between estimated and actual ACL injury risk. Individuals could in theory 

have high associations with the criterion (resolution) without having high-levels of 

judgment calibration (e.g., participants could overestimate risk across all trials). A 

measure of absolute agreement would potentially eliminate this limitation and may best 

serve as an efficient and understandable scoring metric for testing purposes (e.g., those 

who are perfectly calibrated also have perfect resolution). The video clips were 

categorized based on the 1-10 scale (according to the biomechanical measures) in order 

to quantify the absolute accuracy for individual judges. The range of knee abduction 

moment and angle values were used to linearly transform the continuous biomechanical 

values into their respective category on a 1-10 scale. The correlation between the raw and 

categorized video clips was r (18) = -.99 for both knee abduction moment and angle. 

Average absolute error was used to calculate the absolute accuracy between subjective 

ratings and criteria for knee abduction moment (AbAccMom) and angle (AbAccAng) 

over the 20-items.  Average absolute error was defined as the average of the 20 absolute 

value difference scores (i.e., |subjective rating category – criterion category|). This 
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measure can be interpreted as the average judgment error (i.e., without direction) 

compared to the criterion, in the actual scale units (1-10).  

The Exercise Science group did not differ in terms of absolute accuracy compared 

to General Population for either knee abduction moment (AbAccMom) or angle 

(AbAccAng) (see Table 2 for descriptives and effect sizes). Theoretically, the Exercise 

Science group should have displayed lower AbAccMom and AbAccAng scores compared 

to General Population because the overall correlation between relative and absolute 

accuracy was r (211)  = .27 (p < .01) for abduction moment and r (211) = .32 for 

abduction angle across all individuals (p < .01). The absolute accuracy is mathematically 

lowest when the subjective judgment category is the same as the criterion category. Post-

hoc analyses revealed that the current 20-items with the majority of the items located 

near the mid-range of the scale (mean category for moment criterion (SD) = 4.75 (2.20); 

mean category for angle criterion (SD) = 5.20 (2.04)) created an opportunity to bias test 

performance and skill estimates.  An individual could “perform” well by anchoring their 

judgments near the middle of the scale (i.e., 5), a common behavioral tendency observed 

in test-taking. If an individual chose the risk rating “five” for all 20 video clips, they 

would display an AbAccMom of 1.65 and AbAccAng of 1.40, which is substantially lower 

than the aggregate measures. This score would incorrectly indicate that the “rater” 

showed substantial judgment calibration when in fact they were guessing. Overall, the 

General Population group’s average rating (with standard deviation) across all clips was 

4.09 (0.67) compared to 5.22 (2.02) for the Exercise Science group. The standard 

deviation indicates the Exercise Science group utilized more of the scale whereas the 

General Population individuals showed a strong tendency to anchor their judgments 

tightly around the midpoint category 4, resulting in an AbAccMom of 1.55 and AbAccAng 

of 1.70 across the 20 clips. This evidence paired with the aforementioned correlation 



www.manaraa.com

 

   48 

between absolute and relative accuracy suggests the presence of a scale-use anchoring 

bias.  This test design limitation needs to be corrected before absolute accuracy data can 

be further interpreted (see Study 1B below).   

Consistency 

A consistency analysis was also performed comparing the consistency of risk 

estimates on a subset of five video clips that were repeated. Judgment consistency was 

assessed using a similar approach to that of absolute accuracy with performance 

calculated as the average of the five absolute value difference scores (i.e., |subjective 

rating one category – subjective rating two category|), termed AbCon. This measure can 

be interpreted as the average judgment error (without direction) on a repeated 

assessment in the actual scale units (1-10).  

 Exercise science professionals were more consistent (lower AbCon) than the 

General Population group (see Table 2 for descriptives and effect sizes). Specifically, for a 

repeated trial, the average expected deviation on the second rating was 0.83 (on a 10-

point rating scale) for the Exercise Science group. An AbCon value at or below 1.00 was 

deemed sufficient for consistency of expert performers as this value will likely not 

influence injury risk estimation if fewer categories were used (i.e., from 10 to 3) which 

may best represent decision or intervention points. Moreover, 76% of the Exercise 

Science raters displayed AbCon values at or below 1.00, compared to 54% of the General 

Population raters6. Overall, results provide evidence that the majority of individuals 

showed some consistency in their judgments, although Exercise Science rater’s showed 

significantly higher levels of consistency.     

                                                        
6 No significant relationship was found between consistency and any of the performance 
metrics (r (211) < .083). This was likely due to the restriction of range for the consistency 
values. 
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Study 1A: Discussion 
 

Overall, results provide evidence that participants who work/study in exercise 

science domains tend to be more knowledgeable about the ACL and injury risk and also 

tend to show some evidence of superior, reproducible observational movement diagnosis 

skill.  Specifically, in the observational risk estimating task, the group of exercise science 

professionals showed more consistent judgments and also more accurately estimated the 

relative differences in ACL injury risk compared to less knowledgeable members of the 

general population. An analysis of the top performers indicates that some individuals 

showed relatively high-levels of risk estimation accuracy (using both biomechanical 

predictors), with relatively good consistency. Four individuals (two from General 

Population (≈ 1%) and two from Exercise Science (≈ 5%)) displayed a significant 

association with both knee abduction moment and angle (ρ (18) < -.38) and had 

consistency error values less than or equal to 1.00. This is noteworthy considering that 

knee abduction moment should not be directly viewable (and cannot be calculated) from 

a single frontal plane viewpoint. Estimates of abduction moment are thought to require 

multiple cameras, a force platform, and many calculations or else involve the use of the 

ACL nomogram, which requires two cameras and an isokinetic dynamometer.  

Unfortunately, results also revealed some limitations of the current materials that must 

be addressed in order to achieve higher levels of psychometric validity and test 

performance (e.g., artificial inflation of absolute judgment accuracy scores due to 

anchoring of judgments in the middle of the scale).   

Study 1B: Psychometric Test Development 
 
 The goal of Study 1B was to use psychometrically robust analytical methods to 

develop a high-performing test of observational ACL injury risk estimation ability.  This 
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test is intended to be an efficient research tool used for identifying individual differences 

in an essential ability that may contribute to future clinical applications (e.g., developing 

screening and training programs). As noted, there are two dominant approaches to 

modern psychometric test development, i.e., Classical Testing Theory (CTT) emphasizing 

overall test performance optimization (i.e., test-level) and Item Response theory (IRT) 

emphasizing theoretical probability distributions modeled on test-item performance 

(i.e., item level). It is important to note that standard analytic methods need to be 

modified to address various constraints present in the current data.  For example, in 

Study 1A, absolute measures of accuracy were confounded by an anchoring strategy 

widely used by less skilled individuals. Classical test theory (CTT) item parameter 

calculations would be less meaningful under these conditions because they are 

influenced by overall test performance. The bi-modal distribution of these accuracy 

metrics would also make CTT item parameter calculations less informative. 

Unfortunately, an item response theory (IRT) approach would require a substantially 

greater number of heterogeneous responses and complex model fitting across items, 

under assumptions that do not hold (e.g., homogeneity of item discriminability indices). 

Accordingly, the current analysis employed a hybrid approach, using an IRT inspired, 

modified CTT item-analysis (for a related approach using decision trees see Cokely, 

Galesic, Schulz, Ghazal, and Garcia-Retamero (2012)).  Specifically, analyses examined 

individual item performance across three dimensions: difficulty, discriminability and 

guessing. Two key assumptions for this analysis were (a) exercise science professionals 

have higher ACL injury risk estimating ability as compared to the general population and 

(b) peak knee abduction moment has a linear relationship with ACL injury risk.  

Item analysis difficulty and discrimination values were calculated for each 

individual test item (i.e., each video clip). Theoretically, the goal was to select items to 



www.manaraa.com

 

   51 

represent a wide range of difficulty with a maximum degree of discriminability, while 

equally sampling from the full range of the scale to reduce artificial test score inflation 

resulting from any anchoring effect. Item difficulty can be described as the mean 

absolute error for each item across all individuals. The higher the absolute error, the 

more difficult the item. Each item should also discriminate between group members who 

have distinctive differences in general ACL knowledge (i.e., Exercise Science and General 

Population). Discriminability was assessed as the overall effect size of the mean absolute 

error differences between the Exercise Science and General Population groups for each 

item. Items that display large positive effect sizes (Cohen’s d) are considered more 

discriminating (i.e., Exercise Science was more accurate than General Population). In 

order to identify items that optimize both difficulty and discriminability, the product of 

these two parameters was calculated.  

The guessing parameter is directly related to the item’s known location on the 

scale (i.e., the criterion injury risk category). The likelihood of obtaining a low absolute 

accuracy error by guessing is greater for items near the middle of the scale (i.e., five). 

Thus, selecting items toward the ends of the scale should reduce the potential benefit of 

anchoring on any single rating. Guessing performance was analyzed using Monte Carlo 

simulations of 10,000 “pseudorandom” test performances. For each item in the test, an 

integer (1-10) was drawn from a standard normal distribution. Test performance was 

computed and averaged across the 10,000 iterations to estimate “chance” or guessing 

performance for each individual item and for overall test performance.     

The individual item characteristics are presented in Table 3. Based on 

consideration of available variables with emphasis on the product of discriminability and 

difficulty indices, seven candidate items were chosen representing the full range of risk 
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levels7. One test was constructed from these initial seven candidate items. Three 6-item 

tests were constructed by removing one item (either Clip 2, 7 or 8) from the middle range 

to further reduce the benefit of anchoring. Two additional 5-item tests were also 

constructed by removing two items with mid-range risk characteristics (Clip 8, which 

was a 5-risk, and either Clip 2 or 7, which were both a 6-risk). The test scores were 

determined by the sum of the deviation or error points (using knee abduction moment as 

the criterion). The greater the error points the poorer the performance. Zero would 

represent perfect performance. Mathematically the test score and AbAccMom (for each 

test length) should have a perfect relationship if all items are answered, as the 

AbAccMom is the sum of the deviations points divided by the number of items (i.e., the 

mean)8. Moreover, six candidate tests were constructed and evaluated based on their 

various psychometric properties (see Table 4). 

 

                                                        
7 Clip 7 was chosen over Clip 11 and 5 because of its greater difficulty. Higher difficulty 
was prioritized because this test aims to identify high ability individuals.   
8 The average absolute accuracy (i.e. AbAccMom and AbAccAng) for individuals with 
missing data was calculated based on the number of answered trials, which may not have 
equaled the total number of items in that test. Individuals were, however, initially 
excluded from the analysis if they did not answer at least 17 out of the 20 items. 
Correlations between AbAccMom and all associated test scores (i.e. deviation or error 
points) were r (211) > .96.  
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Selecting the Final ACL-IQ Test  
 

All candidate tests were found to be sufficiently difficult as no individual attained 

perfect performance (i.e., peak-performance was roughly 85% of maximum).  Mean and 

median scores showed converging central tendencies (see Table 4). All candidate tests 

successfully discriminated between Exercise Science and General Population groups, 

dramatically improving psychometric discriminability compared to the 20-item test (i.e., 

1,623% improvement). All candidate tests displayed significant correlations with relative 

measures of accuracy using knee abduction moment and angle.  All tests showed robust 

correlations with the ACL knowledge test—an additional index of convergent validity 

(see Table 5). However, the 7 and 6-item tests continued to display an unacceptable, 

moderate potential for anchoring bias such that an anchoring strategy would result in 

better than chance performance. Thus, all 7- and 6-item tests were excluded from further 

consideration. Both 5-item tests reduced the test bias associated with the anchoring 

strategy (anchoring and chance were within two raw points or 6%).  Both 5-item tests 

showed considerable agreement across guessing, anchoring, and central tendency 

variables (i.e., guessing = 52%, anchoring = 58%, mean = 55%, median = 57%).  Both 5-

item tests also displayed similar difficulty values; however, the 5A-item test exhibited a 

13% improvement in discriminability values as compared to the 5B-item test (i.e., a 

difference of 0.24 SDs). The 5A-item test also exhibited a wider range of score dispersion 

(i.e., actual range) and a greater range of score variance despite maintaining similar 

discriminability variance.  Overall, results based on the hybrid item-analysis indicate 

that the 5A-item test offers a highly desirable psychometric profile, matching or 

exceeding performance of all other candidate tests on all essential test-performance 

variables.   
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Table 5. Inter-test and Convergent Validity Coefficients for the Candidate Test Scores  
  20-Item 7-Item 6A-Item 6B-Item 6C-Item 5A-Item 5B-Item 
20-Item 
7-Item .31** 
6A-Item .25** .98** 
6B-Item .28** .97** .96** 
6C-Item .31** .98** .97** .95** 
5A-Item .20** .94** .96** .98** .92** 
5B-Item .22** .94** .97** .92** .98** .94** 
20-Item AbAccMom .99** a .31** .24** .28** .31** .20** .22** 
7-Item AbAccMom .30** .97** a .96** .95** .95** .92** .92** 
6A-Item AbAccMom .23** .96** .97** a .94** .94** .94** .94** 
6B-Item AbAccMom .27** .95** .94** .98** a .93** .96** .90** 
6C-Item AbAccMom .29** .94** .93** .93** .96** a .90** .94** 
5A-Item AbAccMom .19** .92** .94** .96** .90** .97** a .92** 
5B-Item AbAccMom .20** .91** .94** .90** .94** .92** .96** a 
20-Item RelAccMom .23** .31** .35** .34** .34** .37** .38** 
7-Item RelAccMom .09 .62** .67** .67** .67** .72** .73** 
6A-Item RelAccMom .11 .61** .65** .66** .67** .70** .72** 
6B-Item RelAccMom .10 .64** .68** .71** .68** .75** .72** 
6C-Item RelAccMom .09 .63** .67** .68** .68** .73** .72** 
5A-Item RelAccMom .10 .62** .66** .69** .67** .72** .70** 
5B-Item RelAccMom .10 .62** .66** .69** .67** .72** .71** 
20-Item AbAccAng .78** .52** .44** .45** .48** .35** .37** 
7-Item AbAccAng .42** .74** .69** .65** .68** .58** .60** 
6A-Item AbAccAng .53** .69** .65** .60** .64** .54** .58** 
6B-Item AbAccAng .42** .71** .66** .68** .65** .61** .58** 
6C-Item AbAccAng .49** .63** .57** .52** .61** .44** .54** 
5A-Item AbAccAng .54** .62** .59** .60** .58** .56** .53** 
5B-Item AbAccAng .60** .47** .44** .37** .50** .32** .45** 
20-Item RelAccAng .11 .55** .56** .60** .54** .61** .55** 
7-Item RelAccAng .10 .53** .53** .59** .51** .57** .49** 
6A-Item RelAccAng .06 .58** .60** .63** .54** .66** .56** 
6B-Item RelAccAng .12 .54** .53** .59** .52** .57** .50** 
6C-Item RelAccAng .12 .53** .53** .57** .56** .56** .55** 
5A-Item RelAccAng .08 .60** .62** .66** .56** .69** .58** 
5B-Item RelAccAng .10 .59** .62** .61** .63** .64** .66** 
ACL Knowledge .08 -.33** -.35** -.36** -.34** -.38** -.36** 
Note. AbAccMom = mean absolute error using knee abduction moment as criterion; RelAccMom 
= relative accuracy using knee abduction moment as criterion (ρ); AbAccAng = mean absolute 
error using knee abduction angle as criterion; RelAccAng = relative accuracy using knee 
abduction angle as criterion (ρ); aTheoretically should be 1.00, see Footnote 7; *p < .05; **p < .01 
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Brief Study 1 Discussion 
 

This investigation provided some of the first evidence of reliable skill differences 

in observational assessment of ACL injury risk. Initial analyses indicated that superior 

and reproducible performance was both attainable and likely among knowledgeable 

professionals, although a number of constraints limited the interpretability of one 

essential aspect of judgment performance. To address this limit, and in order to develop 

a more robust test of relevant observational assessment skills, a hybrid psychometric 

item-analysis was conducted yielding a number of optimized candidate test structures. 

Comparative analysis revealed a psychometrically dominant 5-item test structure 

optimized for sensitivity, discriminability, difficulty, and guessing. Beyond these 

desirable psychometric properties, analyses provided evidence of convergent validity, 

indicating that the new ACL-IQ test is also a robust predictor of other measures of 

judgment accuracy and general ACL knowledge.  

Although the current analyses indicate that the new candidate ACL-IQ is likely to 

be a strong and robust instrument, several potential limitations need to be considered. 

For example, the shortened test was created by identifying items that in part maximized 

psychometric performance differences based on group differences (Exercise Science and 

General Population). The initial Norwegian Exercise Science sample was relatively small 

(n = 42), and thus there is some risk of sample and thus test bias.  Moreover, the test 

contained individuals from various professions, which may not be representative of the 

skilled population (e.g., potential restrictions of range).  Although steps were taken to 

mitigate potential risks (e.g., selection of an extra-wide range of difficulty to avoid ceiling 

effects), out-of-sample cross-validation is needed. To the extent that future studies 

include large samples of participants working in various professions within the exercise 
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sciences (incl. sport coaches and parents of athletes), higher-fidelity analysis of 

theoretically interesting variations in test-performance would also be possible (e.g., are 

coaches better than physical therapists; are differences in skilled performance mediated 

by differences in knowledge variables). Furthermore, because education and age differed 

between groups in Study 1 it is possible that other ability measures could in part 

influence performance differences (e.g., is test performance related to mental rotation 

ability or decision-making skill). 
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CHAPTER 3: STUDY 2- ACL-IQ CROSS-VALIDATION AND 
PERFORMANCE MODELING 

Introduction 

In Study 1, observational ACL injury risk estimation performance was empirically 

described and superior performance evidence established. A 5-item test was developed 

providing a suitable range of test difficulty with robust skill group discriminability. This 

test was developed by selecting items that optimized group differences (Exercise Science 

and General Population) and difficulty based on a relatively small sample of individuals 

with diverse backgrounds. In Study 2, the goal was to cross-validate the new 5-item ACL-

IQ in a larger and more representative sample, assessing out-of-sample psychometric 

sensitivity, test-retest reliability, and developing a model of some essential cognitive 

mechanisms and biases (e.g., cue weighting and utilization).   

Preliminary analysis of data from Study 1B indicated ACL knowledge (using a 3-

item test) was related to professional domain (r (211) = .68, p < .001) and 5-item test 

performance (r (211) = .38, p < .001). However, hierarchical linear regression revealed 

adding ACL knowledge scores to professional domain only improved 5-item ACL-IQ 

performance estimation by ΔR2 = .005. Sobel test results also indicated ACL knowledge 

did not necessarily mediate the effect of group on 5-item test performance, indicating a 

non-significant trend in the correct direction (Sobel statistic = 1.33, p = .18). The low 

number of ACL knowledge items and unequal variance/bimodal distribution of the 

group’s score likely influenced this lack of mediation. A more extensive knowledge 

assessment (11-items) was developed to try to explain the performance results (above 

profession), which parallels current theoretical models of expertise (cue usage). 

Additionally, assessing cue utilization/importance may better capture domain-specific 

knowledge, which should also theoretically be related to performance (e.g., Lens 
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models). Various strategies may be effective for estimating ACL injury risk. However, the 

strategies that include cues with higher ecological validity (quantified through 

biomechanical analysis) should be more effective. Finally, demographic factors and 

domain-general measures of perceptual/cognitive skill will be used to better understand 

the mechanisms and boundary conditions for ACL-IQ performance models. Overall, the 

specific aims of the present study were to cross-validate the skill group 

discriminability/sensitivity results of Study 1, assess test-retest reliability, understand 

the underlying cognitive mechanisms of ACL-IQ expertise and assess cross-profession 

differences. 

Hypotheses 
 

1.) Consistent with Study 1B, exercise science professionals (i.e., physical 

therapists, athletic trainers, orthopedic doctors, exercise science 

academics/students and strength & conditioning coaches) will make more 

accurate ACL injury risk estimates compared to general population 

individuals (i.e., non-exercise science professionals, sport coaches, 

parents/athletes).  

2.) The 5-item ACL-IQ will demonstrate robust test-retest reliability by 

displaying no mean differences and a high correlation coefficient (r > .70) 

between test performances.  

3.) ACL knowledge and cue utility will be the best predictors of test 

performance. 

a. ACL knowledge will be indirectly related to performance through 

ratings of cue utility. ACL knowledge should thus allow individuals 

to focus on or ignore task-relevant or irrelevant cues, which in 
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turn will determine ACL-IQ performance. The path model 

depicted in Figure 3 is a conceptual diagram of the hypothesis 

regarding ACL-IQ performance determining factors.  

 

 

Figure 3. Hypothesized Path Model for Relationship between ACL Knowledge, Cue 
Utility and ACL-IQ Performance. 

 
4.) Age, gender, education level, risk estimation experience, history of ACL 

injury, previous/current sport participation, or domain-general 

perceptual/cognitive skill, if significantly associated with performance, 

will be mediated by ACL knowledge and cue utility. 

5.) Performance differences between groups (i.e., exercise science and 

general population) will be mediated by ACL knowledge and cue utility.  

6.) Professionals within the exercise sciences (i.e., physical therapists, 

athletic trainers, strength & conditioning coaches, and physicians) who 

likely encompass the greatest ACL knowledge will perform better than 

sport coaches, parents, athletes and general population individuals. 

Additionally, groups hypothesized to have some experience and 

knowledge regarding ACL injury/prevention (i.e., sport coaches and 

athletes), will perform better than parents and other general population 

individuals. 

  

ACL-IQ      ACL
Knowledge

Cue Utility
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Methods 

Participant Characteristics  
 
 To enable representative sampling, a variety of exercise science 

professionals/students (i.e., physicians, sports medicine staff, strength & conditioning 

coaches, academics, and students) who would benefit from identifying ACL injury risk of 

athletes, which is similar to the Study 1 Exercise Science group, were recruited. 

Additionally, a sample of potential non-exercise science or general population 

individuals, who may also benefit from assessing ACL injury risk, were recruited. All 

participants were recruited via email through personal networks and list-

serv/blog/social media posts or from a paid web panel (i.e., Amazon’s Mechanical Turk). 

Overall, 428 participants completed the study, in which 214 were classified into the 

Exercise Science group and 214 classified into the General Population group (see Tables 

6 and 7 for occupational/subgroup details).  

Table 6. Participant Occupation/Subgroup (n = 428) 

Occupation Frequency 
Percentage 
(of Total) 

Exercise Science  
    Athletic Trainer 50 11.7 
    Physical Therapist 46 10.7 
    Physician^ 36 8.4 
    Exercise Science Student 27 6.3 
    Exercise Science Academic 21 4.9 
    S&C Coach 34 7.9 
        Exercise Science Total 214 50.0 
General Population 
    Other  145 33.9 
    Parent of Athlete  26 6.1 
    Young Female Athlete# 11 2.6 
    Sport Coach 32 7.5 
        General Population Total 214 50.0 
Note. S&C = Strength and Conditioning; ^81% of Physicians 
Specialized in Orthopedics/Sports Medicine and 19% in 
Family Medicine; #≤ 25 years old. 
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Table 7. Demographic Information as a Percentage Within Each Group or 
Other Specified 

Characteristic General Population 
(n = 214) 

Exercise Science  
(n = 214) 

Highest Degree**  
      High School 36.0% 5.6% 
      Associates 9.3% 0.0% 
      Bachelors 39.3% 24.8% 
      Masters 14.0% 32.7% 
      Doctorate 1.4% 36.9% 
Age 
      M [95% CI] 35.92 [34.22, 37.68] 34.20 [32.70, 35.62] 
      Mdn [95% CI] 33 [30.5, 34] 32 [29, 34] 
Gender**  
      Female 59.8% 35.5% 
      Male 40.2% 64.5% 
Sport Participation** 
      No 43.5% 7.9% 
      Yes 56.5% 92.1% 
Diagnosed with ACL Injury** 
     No 92.5% 88.3% 
     Yes 7.5% 11.7% 
Note. CI = Confidence Interval (Bootstrap using 1000 samples); **Significant 
difference (assessed by χ2) between groups, p < .01. 

Study Procedures 
 

The study was fully computerized and available online. The ACL-IQ was not 

compatible with mobile devices and was thus limited to laptop or desktop computers. 

The participants completed the new 5-item ACL-IQ. Following this test, domain-specific 

knowledge was assessed with 11 ACL knowledge questions related to location, function, 

and risk factors for injury (Appendix A).  Additionally, cue utility was elicited through a 

brief survey in which participants indicated the importance of available visual cues (e.g., 

knee motion, hip motion, trunk motion, landing stiffness, height, weight, etc.) on a 1-10 

scale (Appendix B). The analysis of self-reported judgments are likely to have some 
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limitations (e.g., potential self-serving biases in strategy reporting); however, given the 

need for quick assessment in an online study, and based on pilot data, the potential costs 

and benefits of this approach seemed well balanced. Pilot data provided evidence that 

there was good reason to expect that participants do accurately report key aspects of 

their strategies, which in turn can be related to more objectively verifiable performance 

metrics. Additionally, subject rating of cue utility has been used in other expertise 

studies such as in the Feature Discrimination Task (Loveday, Wiggins, Harris, O’Hare, & 

Smith, 2013; Loveday, Wiggins, & Searle, 2013; Loveday, Wiggins, Searle, Festa, & 

Schell, 2012; Wiggins, Brouwers, Davies, & Loveday, 2014).   

Domain-general cognitive abilities have been shown to be related to a wide range 

of differences in superior judgment and decision-making performance; and they often 

influence differences in strategic task behavior (Cokely et al., 2012; Cokely & Kelley, 

2009; Cokely et al., 2006; Ghazal et al., 2014). General cognitive ability may be related to 

education level, which was potentially different in the groups of Study 1. In order to 

estimate potential contributions of general cognitive abilities to overall test performance, 

participants completed the Berlin Numeracy Test (BNT). The BNT has been extensively 

validated for assessment of statistical numeracy and risk literacy, which is the ability to 

accurately interpret and make good decisions based on information about risk (Cokely et 

al., 2012). Theoretically, it is also possible that domain-general mental rotation abilities 

help determine observational movement analysis performance (i.e., ACL-IQ 

performance).  Previous research indicates that spatial ability (intrinsic and dynamic) is 

likely a minimal predictor of qualitative movement analysis performance.  Nevertheless, 

to estimate potential contributions of domain-general spatial abilities the 24-item 

Mental Rotation Test (MRT-A) was administered (Peters et al., 1995; Vandenberg & 

Kuse, 1978).  Personality was assessed using the 10-item Big Five to examine potential 
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test biases related to ACL-IQ scores (Gosling, Rentfrow, & Swann Jr, 2003). For 

example, are more conscientious people better at detecting differences in ACL risk level?  

Study 2A: Cross-validation and Test-Retest Reliability 

Results/Discussion 

Basic Attributes and Cross-validation  
 
 Range and average measures of ACL-IQ scores are presented in Table 8 (with 

results from Study 1B presented alongside). No statistically significant difference in 

effect size (d) was displayed between the two studies (z = 1.17; p = .24). The average 

score of Study 2A was 63%, which was statistically different from Study 1B, potentially 

due to the larger sample size of the Exercise Science group (172 more than Study 1B).  

Similar to Study 1B, no individual scored 100% correct in Study 2A. Additionally, group 

means between Studies 1B and 2A were nearly identical, corroborating the 

discriminability evidence for the ACL-IQ, supporting Hypothesis 1.  
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Table 8. Study 1B and 2A Cross-Validation Comparison 
Scale Attributes Study 1B  Study 2A  
    M Time in Min:Sec (SD) 2:24 (0:47) 
    Score Range 0-38 (0-100) 
    Achieved Range (%) 12-34 (32-89) 10-36 (26-95) 
   n 211 428 
   Overall M (%) 21.69 (57) 24.00 (63)* 
   Overall Mdn (%) 21 (55) 24 (63) 
   Overall SD (%) 5.11 (13) 5.86 (15) 
Discriminability 
   Exercise Science n 42 214 
   Exercise Science M (%) 28.31 (74)# 27.97 (74)# 
   Exercise Science SD (%) 3.80 (10) 3.97 (10) 
   General Population n   171 214 
   General Population M (%) 20.07 (53) 20.04 (53) 
   General Population SD (%) 3.96 (10) 4.63 (12) 
   Cohen's d  2.11 1.84 
       Weighted SD (%) 3.92 (10) 4.30 (11) 
       95% CI [1.70, 2.48]   [1.60, 2.05] 
Note. % = % Correct; *Significantly different from Study 1, p < .01; 
#Significantly different from General Population group, p < .01. 

 

Test-Retest Reliability  
 

Internal consistency has been previously assessed (see consistency analysis in 

Study 1A and results in Table 3). Two of the five repeated video clips, which displayed the 

highest internal consistency values, were included in the new 5-item ACL-IQ. The 5-item 

ACL-IQ was administered to a subset of 19 individuals (13 Exercise Science and 6 

General Population) on two occasions separated by approximately nine days. Table 9 

describes the test-retest characteristics of the ACL-IQ.  
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Table 9. ACL-IQ Test-Retest Reliability Characteristics (n = 19) 
Test  Retest 

Descriptives 
    M (%) 28.47 (75) 26.95 (71) 
    SD (%) 3.82 (10) 4.10 (11) 
    Range (%) 20-34 (53-89) 18-33 (47-87) 
    Time Between Tests in Days (SD) 9.42 (2.78) 
Reliability Metrics 
    Retest Correlation [95% CI] .90 [.74, .96] 
    Typical Error (%) 1.28 (3) 
    Mean Difference (%) -1.53 (-4)* 
    Cohen's d 0.39 
Note. % = % Correct; CI = Confidence Interval (Bootstrap using 1000 samples); 
*Significant mean difference, t(18) = -3.68, p = .002. 

 

Despite the high test-retest correlation coefficient (r = .90) a small mean 

difference was displayed between test sessions9. The mean difference is small, within the 

typical error range and in agreement with Study 1A internal consistency estimates. The 

typical error represents the amount the score may vary on a repeated performance. For 

example, if someone scored a 30 (i.e., 8 error points) on the first ACL-IQ there is a 90% 

probability that their score on a repeated performance will be between 28 and 32 (typical 

error x 1.65 = 2.11). Thus, based on this typical error profile it is highly unlikely that this 

statistically significant difference of 1.53 is practically meaningful. Overall, the test-retest 

results are in support of Hypothesis 2 with the note of a small and likely clinically 

insignificant mean difference.  

                                                        
9 Performance level (average across testing sessions), differences in: cue utility ratings or 
ACL knowledge test score did not independently correlate with test-retest difference 
scores. Additionally, stepwise linear regression did not reveal any significant predictors 
of test-retest score differences.   
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Study 2B: Performance Mechanisms 

Results/Discussion 

Independent Correlations 
 

Initial independent correlations between various factors and ACL-IQ are 

displayed in Table 10. All domain-specific factors were related to ACL-IQ score 

strengthening convergent validity evidence. The new 11-item ACL knowledge test 

predicted performance to a greater degree than the 3-item ACL knowledge test used in 

study 1B (i.e., R2 = .14 vs .35). Various cue utility ratings were also related to ACL-IQ 

performance. Significant independent task-relevant cues included inward/outward 

knee/thigh motion and lateral trunk motion. Significant task-irrelevant cues included 

height and weight of the individual as well as jump height and jump alignment.  

Regressing ACL-IQ on all cue utility ratings revealed an R2 = .43, where five cues were 

statistically significant (jump height, knee/thigh motion, weight, trunk, height and foot 

alignment). The mean cue importance ratings across levels of ACL-IQ score are depicted 

in Figure 4. 
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Table 10. Independent Correlation with ACL-IQ (n = 428) 
  ACL-IQ  95% CI 
Domain-Specific  
    ACL Knowledge Test (11-items) .59** [.54, .65] 
    ACL Papers & Books Read/Month .38** [.31, .44] 
    ACL Risk Assessment Experiences (yrs) .19** [.11, .28] 
Estimated Cue Validity (Cue Utility) 
    Arm Motion -.04 [-.13, .05] 
    Landing Symmetry .08 [-.03, .18] 
    Inward/Outward Knee Motion .40** [.32, .47] 
    Inward/Outward Thigh Motion .34** [.26, .42] 
    Knee & Thigh Composite Average# .40** [.33, .47] 
    Lateral Trunk Motion .19** [0.1, .29] 
    Landing Stiffness .01 [-.09, .09] 
    Foot Alignment -.07 [-.16, .02] 
    Height of Individual -.19** [-.28, -.09] 
    Weight of Individual -.38** [-.46, -.29] 
    Jump Height -.54** [-.61, -.46] 
    Jump Alignment -.18** [-.28, -.09] 
Domain-General 
    Domain General Perceptual/Cognitive Ability 
      Mental Rotation Test-A (24-items)^ .24** [.15, .33] 
      Berlin Numeracy Test (4-items)^ .14** [.05, .24] 
    Personality Traits 
      Extraversion .12* [.03, .23] 
      Agreeableness -.11* [-.21, -.01] 
      Conscientiousness .17** [.06, .27] 
      Emotional Stability .06 [-.03, .15] 
      Openness to Experience -.05 [-.14, .05] 
Demographic Variables 
    Education Level .40** [.32, .47] 
    Age -.19** [-.27, -.10] 
    Gender .18** [.09, .27] 
    Sport Participation .30** [.21, .39] 
    Diagnosed with ACL Injury .13** [.03, .22] 
Note. CI = Confidence Interval (Bootstrap using 1000 samples); #Variable computed to 
replace both Knee and Thigh Motion to decrease multicollinearity (Knee and Thigh Motion: 
r (427) = .71); ^Mental Rotation Test was missing 36(8.4%) values and Berlin Numeracy 
Test 8(1.9%), Little’s Missing Completely at Random test was not significant (p = .53) thus 
Expectation Maximization (implemented in SPSS) was used to interpolate missing values 
and used to calculate the correlation coefficient which were not statistically different from 
the coefficients with missing values (missing data MRT: r (391)= .23** [.14, .33] and BNT: r 
(419) = .14** [.05, .24]), additionally the means of the interpolated and missing datasets 
were not statistically different (p < .01); *p < .05; **p < .01;  
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Linear Regression Analysis 
 

To begin to address Hypothesis 3, hierarchical and stepwise regression was 

performed to assess the independent contributions of ACL knowledge and cue utility 

ratings for predicting ACL-IQ performance. Additionally, a model was developed to 

optimize the fit with only the “influential” cue utility variables. The results of these 

analyses are displayed in Table 11.  Together, ACL knowledge and cue utility explained 

roughly 50% of the variance in ACL-IQ scores. Adding cue importance to ACL knowledge 

resulted in a 16% increase in variance explained. Alternatively, adding ACL knowledge to 

cue importance resulted in an 8% increase in variance explained. Through stepwise 

regression analysis with knowledge and cue utility ratings, of the various cues, four cues 

were included in the final model (i.e., jump height, knee/thigh motion, weight of 

individual, and trunk motion). 
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To further address Hypothesis 3, hierarchical regression analysis was conducted, 

using Model 4 as the base, to assess the additive effect of other factors such as domain-

general ability, personality and demographics on ACL-IQ performance (Table 12). 

Although a statistically significant change in F was displayed when adding other domain-

specific factors such as the number of ACL books/papers and ACL injury risk assessment 

experience, the effect was minimal (i.e., ΔR2 = .008). No significant R2 change was 

observed when domain-general factors or personality measures were added to the base 

model. Demographic measures such as education level, age, and gender significantly 

improved R2 by .038. This significant improvement in model fit is relatively small and 

increases the risk for over-fit. Finally, when other demographic variables such as sports 

participation and previous ACL injury are added to the base model a significant but 

minimal change in R2 resulted (ΔR2 = .009). 
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Following the hierarchical regression analyses, a stepwise regression analysis was 

conducted on all the variables to determine the best fitting model without any prior 

assumptions about predictors (order or type). Furthermore, the stepwise model was 

assessed for a random 80% of the data in order to cross-validate on a smaller sample to 

assess model fit/over-fit. The results of two-iterations of training and validating are 

displayed in Table 13. The demographic variables, number of ACL papers/books read, 

and trunk motion cue utility were not significant factors in the validation datasets, 

demonstrating potential over-fitting. Overall, the majority of these performance models 

(hierarchical and stepwise) included ACL knowledge and three cue utilities (jump height, 

knee/thigh motion, and weight) to parsimoniously predict ACL-IQ scores while 

minimizing the potential for over-fit. The hierarchical and stepwise regression analyses 

provide evidence to support Hypothesis 3, indicating that ACL knowledge and cue utility 

were the best predictors of ACL-IQ performance.  
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Moreover, the cause of the relationship between the significant domain-general, 

personality and demographic variables (in Table 10) was likely due to group (Exercise 

Science and General Population) differences or an indirect effect through ACL 

knowledge and cue utility. Specifically, when controlling for group membership 

(Exercise Science and General Population), ACL knowledge, jump height, knee/thigh 

motion, and weight cue utility ratings were the only significant predictors in a stepwise 

regression model (see Table 14 for stepwise and cross-validation results). Additionally, 

mediation analysis was conducted on the significant independent predictors of ACL-IQ 

score to assess the indirect effect of various predictors on ACL-IQ score through ACL 

knowledge and cue utility. The total indirect effects of the mediators (ACL knowledge 

and cues: jump height, knee/thigh motion, and weight), total effects, and direct effects 

are reported in Table 15. All predictors except age and potentially extraversion had a 

significant influence on ACL-IQ score through ACL knowledge and cue utility ratings for 

jump height, knee/thigh motion, and weight (i.e., the total indirect effect 95% CI did not 

contain zero). Domain-general perceptual/cognitive ability, personality factors, and 

previous ACL injury did not have a significant direct effect on ACL-IQ score (see Direct 

Effects in Table 15). Factors such as the number of ACL papers/books read, education, 

and sports participation were partially mediated by ACL knowledge and cue utility 

factors. Other than age (which has a small influence on ACL-IQ and included in models 

with likelihood of over-fit), ACL knowledge and cue utility ratings of jump height, 

knee/thigh motion, and weight, mediated the relationships between significant 

independent predictors and ACL-IQ, adding confirmatory evidence to Hypothesis 4.  
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Why did the Exercise Science group perform better than the General Population 

group? According to these aforementioned models, Exercise Science professionals would 

have greater ACL knowledge and rate the importance of jump height and weight lower 

and knee/thigh motion higher. As previously described, when controlling for group 

(Exercise Science or General Population), the same four factors, that is, ACL knowledge, 

jump height, knee/thigh motion, and weight were included in a stepwise regression 

model and upheld in cross-validation datasets. When these four factors were included as 

mediators in a model with group predicting ACL-IQ (Figure 5), significant indirect 

effects were displayed (see Table 16 for specific results).  

 

 

 
Figure 5. Model 10: Parallel Multiple Mediation Model for the Group Differences in ACL-
IQ Scores  
Note. Constant = 18.88, n = 428; R2 = .57). *p < .05; **p < .01 
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Table 16. Indirect Effects of Group on ACL-IQ though ACL Knowledge and Cue Utility 
Variables 
Predictor Indirect Effect Bootstrap SE Bootstrap CI 
Total 3.48 0.42 [2.71, 4.34] 
ACL Knowledge 1.37** 0.35 [0.73, 2.08] 
Cue: Jump Height  1.07** 0.28 [0.57, 1.70] 
Cue: Knee & Thigh Motion  0.68** 0.19 [0.36, 1.11] 
Cue: Weight of Individual Rating 0.35* 0.14 [0.12, 0.67] 
Note. Indirect Effect = Unstandardized coefficient; Bootstrap CI and SE (Standard 
Error) were bias-corrected with 1000 samples; Normal Theory (Sobel) Test: *p < .05; 
**p < .01 
 

This mediation analysis conducted using ordinary least squares path analysis 

revealed that those in the Exercise Science group displayed higher ACL-IQ scores 

because they had greater ACL knowledge, rated jump height and weight as less 

important and knee/thigh motion as more important. The direct effect of group on ACL-

IQ, independent of mediators, was still significant but reduced by approximately 44% 

due to the inclusion of the mediators (difference between c and c’ or total and direct 

effects). Furthermore, the addition of group membership (Exercise Science or General 

Population) to ACL knowledge and cue utility of jump height, knee/thigh motion, and 

weight, improved ACL-IQ model fit by ΔR2 of .072. However, of the explainable variance, 

ACL knowledge and three cue utilities contributed 87% to the models prediction ability.  

To test Hypothesis 3a, the path model: ACL-Knowledge -> Cue Utility -> ACL-IQ, 

a mediation analysis was conducted. Figure 6 and Table 17 display the results.  
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Figure 6. Model 11: Parallel Multiple Mediation Model for the Relationship Between ACL 
Knowledge and ACL-IQ Scores  
Note. Constant = 17.17, n = 428; R2 = .50). *p < .05; **p < .01 
 

Table 17. Indirect Effects of Knowledge on ACL-IQ though Cue Utility Variables 
Predictor Indirect Effect Bootstrap SE Bootstrap CI 
Total 0.62 0.08 [0.48, 0.79] 
Cue: Jump Height  0.32** 0.07 [0.20, 0.46] 
Cue: Knee & Thigh Motion  0.20** 0.04 [0.13, 0.31] 
Cue: Weight of Individual Rating 0.09* 0.03 [0.03, 0.16] 
Note. Indirect Effect = Unstandardized coefficient; Bootstrap CI and SE (Standard 
Error) were bias-corrected with 1000 samples; Normal Theory (Sobel) Test: *p < 
.05; **p < .01; 

 

An individual scoring 1.0 point higher on their ACL knowledge test is estimated 

to have a 0.62 higher ACL-IQ score through their cue utility ratings of the three cues (i.e., 

total indirect effect). Similarly, independent of cue utility ratings, an individual with 1.0 

higher on their ACL knowledge test is estimated to have a 1.0 higher ACL-IQ score (i.e., 

direct effect or c’). Both cue utility ratings of jump height and knee/thigh motion have 

statistically larger indirect effects than weight as indicated by the 95% Bootstrap 

confidence intervals for the contrasts not including zero. If group membership was 
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included as a covariate, similar results were displayed but the indirect/direct effect 

magnitudes were smaller (see Figure 7 and Table 18 for specific results). 

 

 

Figure 7. Model 12: Parallel Multiple Mediation Model for the Relationship Between ACL 
Knowledge and ACL-IQ Scores with Group as a Covariate  
Note. Constant = 18.88, n = 428; R2 = .57). *p < .05; **p < .01 

 

Table 18. Indirect Effects of Knowledge on ACL-IQ though Cue Utility Variables 
Controlling for Group 
Predictor Indirect Effect Bootstrap SE Bootstrap CI 
Total 0.23 0.05 [0.14, 0.35] 
Cue: Jump Height  0.13** 0.04 [0.06, 0.23] 
Cue: Knee & Thigh Motion  0.06* 0.03 [0.01, 0.13] 
Cue: Weight of Individual Rating 0.04# 0.02 [0.01, 0.11] 
Note. Indirect Effect = Unstandardized coefficient; Bootstrap CI and SE (Standard 
Error) were bias-corrected with 1000 samples; Normal Theory (Sobel) Test: *p < 
.05; **p < .01; # p = .08. 

 
 

Conditional Effects 
 
 How robust are the relationships in process Model 11? Do various degrees of 

mental rotation ability change the relationship between cue utility and ACL-IQ? Does 

playing sports change the relationship between ACL knowledge and cue utility? These 
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and other theoretically plausible conditional effects were tested (see Figure 8 for 

conceptual diagram of the various conditional effects).  

 

 
Figure 8. Conceptual Diagram of Potential Moderation Effect on Process Model 11 

The moderation effects of domain-general and demographic variables did not 

significantly alter the performance of, or relationships within, Model 11. Various 

interaction or moderation terms were statistically significant (p < .05), however 

marginal change in R2 resulted. Specifically, the inclusion of various moderators in 

Model 11 resulted in R2 changes below .017. Furthermore, using the Johnson-Neyman 

technique to probe the interaction to determine where the values of a moderator change 

the relationships to become non-significant, no statistical significant transition point was 

observed for any of the tested moderator (e.g., BNT, MRT, age, education). Additionally, 

the inclusion of a potential moderator did not alter the indirect effects of ACL knowledge 

on ACL-IQ through the various cue utilities. Overall, Model 11 appears to be robust 

against the conditional effects of domain-general and demographic variables. The one 

boundary condition for this model includes using it to differentiate/explain performance 

in highly skilled individuals (i.e., Exercise Science professionals). 
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When group membership (Exercise Science or General Population) is included as 

a moderator, the interaction term with jump height cue utility and group becomes 

significant (p = .037). When this independent interaction term is added to the Model 11 

predicting ACL-IQ, the ΔR2 = .005 (p = .02). Moreover, the relationship between jump 

height and ACL-IQ is significant for the General Population group but not for the 

Exercise Science group. Additionally, the indirect effects of ACL knowledge on ACL-IQ 

through the cue utility mediators are conditioned upon group membership. Specifically, 

the indirect effects of ACL knowledge on ACL-IQ through cue utility mediators becomes 

non-significant (all cue utility indirect effects include zero in the 95% Bootstrap CI) for 

Exercise Science group whereas the indirect effects remain significant in the General 

Population group. These between-group differences in model performance/structure can 

be further exemplified by regressing ACL-IQ on the predictors (ACL knowledge, cue 

utility ratings of: jump height, knee/thigh motion, and weight), for each group separately. 

The General Population group R2 = .28, where all variables were significant (p < .05) and 

Exercise Science R2 = .12, where all variables except jump height were significant (p 

< .05). Thus, as the level of expertise increases, it becomes more difficult to predict 

performance with these simplified and moderate reliability assessment methods for cue 

utility.10 Additionally, for groups with high levels of expertise, the indirect effects of 

knowledge on ACL-IQ through the cue utility mediators become trivial. 

 The moderation effect of group membership (Exercise Science or General 

Population) accords with expertise research where higher fidelity/reliability process level 

data such as eye-tracking and verbal protocol analysis are better at identifying expertise 

differences when performers have similar or high abilities. Thus, the error resulting from 

                                                        
10 All cue utility rating test-retest reliability coefficients (r) ranged between .49 to .78 (n = 
19).   
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restriction of range and relatively imprecise cognitive process level data substantiate the 

moderation effect of group membership. However, given the ease of using this cue utility 

assessment, the results indicate these factors were robust against many plausible 

moderators and useful for describing the overall nature of risk-estimating skill across a 

wide range of ability levels.   

Cross-Profession Discriminability  
 
 Subgroup/occupation ACL-IQ scores and ACL knowledge test results are 

depicted in Figure 9 and cue importance ratings in Figure 10. One-way ANOVA with 

post-hoc pairwise comparison (Tukey HSD) on ACL-IQ revealed that General Population 

subgroups such as non-exercise science professionals and parents (i.e., Other and 

Other/Parent) performed lower than all other subgroups (p < .05). Female athletes 

performed lower than exercise science students (p < .05).11 Sport coaches displayed 

lower ACL-IQ scores than exercise science students and academics, physicians, strength 

and conditioning coaches, athletic trainers, and physical therapists (p < .05). There was 

no statistically significant difference in ACL-IQ between exercise science students and 

academics, physicians, strength and conditioning coaches, athletic trainers, or physical 

therapists (p > .05). When grouped according to Hypothesis 6 predictions, that is, High: 

physical therapists, athletic trainers, strength & conditioning coaches, and physicians; 

Medium: sport coaches and athletes; and Low: parents and other non-exercise science 

individuals (i.e., Other) results are displayed in Figure 11. All three groups displayed 

significant mean differences (p < .05) in ACL-IQ score.  

All General Population subgroups displayed lower ACL knowledge compared to 

the Exercise Science subgroups (p < .05). There were no significant differences in ACL 

                                                        
11 Only 11 non-exercise science female athletes were included in the sample thus mean 
estimates are imprecise.  
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knowledge between exercise science students and academics, physicians, strength and 

conditioning coaches, athletic trainers, or physical therapists (p > .05). 

The mean cue utility differences for the cues significantly related to performance 

were analyzed using a one-way ANOVA with post-hoc pairwise comparisons (Tukey 

HSD). Exercise science students and academics, physicians, strength and conditioning 

coaches, athletic trainers, and physical therapists rated knee/thigh motion higher than 

the Other subgroup (which was not statistically different from Other/Parent, female 

athletes, or sport coaches) (p < .05). Strength and conditioning coaches and athletic 

trainers rated trunk motion higher than the Other subgroup (p < .05). No statistically 

significant difference between subgroups was displayed for the cue utility rating of 

height. The Other subgroup rated weight higher than athletic trainers (p < .05). 

Other/Parent subgroup rated weight higher than exercise science students and 

academics, physicians, athletic trainers, and physical therapists. Sport coaches rated 

weight higher than athletic trainers (p < .05). Other and Other/Parent subgroups rated 

jump height higher than exercise science students and academics, physicians, strength 

and conditioning coaches, athletic trainers, and physical therapists. Sport coaches rated 

jump height higher than exercise science students & academics, physicians, athletic 

trainers and physical therapists. The Other subgroup rated jump alignment greater than 

exercise science academics (p < .05). Other/Parent subgroup rated jump alignment 

greater than exercise science students and academics (p < .05). 

Overall, the conclusions from the subgroup analysis parallel the aforementioned 

performance modeling results. That is, the General Population subgroups (i.e., Other, 

Other/Parents, Sport Coaches) have lower ACL-IQ, lower ACL knowledge, rate the 

importance of knee/thigh motion lower, and weight and jump height higher. The slightly 

higher ACL-IQ of sport coaches over the Other subgroup is likely due to the slightly 
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higher ACL knowledge and higher knee/thigh importance rating. Finally, Hypothesis 6 

was supported as significant mean differences in ACL-IQ between the three groups were 

displayed.   

 

 
Figure 9. ACL-IQ and ACL Knowledge Scores of Various Subgroups.  
Note. ExSci = Exercise Science; S&C = Strength and Conditioning 
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Figure 11. ACL-IQ and ACL Knowledge Scores of Subgroups in Three Hypothesized Skill 
Levels. 
Note. AT = Athletic Trainer; PT = Physical Therapist; S&C = Strength and Conditioning 
Coach. 
 

Brief Study 2 Discussion 

 The results from Study 2A corroborate evidence from Study 1B indicating the 

ACL-IQ is a reliable and sensitive tool for assessing ACL injury risk estimating expertise. 

Additionally, further validity evidence was established demonstrating the ACL-IQ works 

well because it conforms with current theories of expertise where domain-specific factors, 

and importantly, judgment processes, contribute highly to describe performance 

mechanisms. The boundary conditions for the ACL-IQ process model demonstrated 

sufficient robustness and parallels contemporary theories of expert performance. 

Furthermore, occupational differences in ACL-IQ reflect differences in domain-specific 

knowledge and cue utility.  Finally, results from Study 2B document the 

individuals/groups who would likely need to improve performance, and the established 

process Model 11 provides a foundation for developing these training tools/programs.  
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CHAPTER 4: CONCLUSIONS 
 
 The initial results of Study 1A provided the first evidence that ACL injury risk can 

be reliably and accurately assessed by visual inspection. Additionally, in Study 1B, a short 

test was developed to assess this skill using modern psychometric techniques. The 

results of Study 2A replicated the results of Study 1B providing additional converging 

evidence demonstrating the 5-item ACL-IQ was a psychometrically robust and reliable 

research tool for examining individual differences in ACL injury risk estimating ability. 

An additional aim of Study 2 was to extend results of Study 1B by examining the 

potential cognitive mechanisms underlying performance. Domain-specific knowledge 

(including measures of cue usage/importance) was the best predictor of performance. 

Additionally, a process model (Figure 6) was developed describing the indirect effect of 

ACL knowledge on ACL-IQ through cue utility ratings of three cues (mediators). This 

process model was robust against potential moderators and is essential for both 

strengthening theories of skilled performance as well as the development of training or 

decision support tools. Finally, this framework for systematically assessing observational 

movement analysis skill can be extended to other clinical situations where identifying 

biomechanical abnormalities is important for assessing injury risk, performance 

enhancement, or rehabilitation progress.  Overall, this dissertation developed the first 

systematic approach and technology for assessing individual differences in observational 

movement analysis skill.  

Theoretical Contribution 
 
 The results from Study 1B and 2B provide information regarding the nature of 

expertise, which parallels contemporary theories of expert performance. Specifically, 

results of study 2B demonstrated that the best factors that influenced performance were 
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domain-specific knowledge and cue utility. Previous expertise research in occupational 

(Schmidt & Hunter, 2004; Schmidt & Hunter, 1998) and movement analysis (Leas & Chi, 

1993; Ste-Marie, 1999) disciplines also acknowledged the importance of domain-specific 

knowledge as a factor influencing expertise. Similarly, in Study 2B, domain-general 

abilities were related to performance but only because of or through domain-specific 

factors, which is also consistent with previous findings (Schmidt et al., 1986). 

Furthermore, expertise differences in the current study were related to cognitive process 

measures such as cue utility.  

Previous meta-analyses using process level data revealed that experts focus on 

task-relevant while ignoring task-irrelevant cues (Gegenfurtner et al., 2011; Mann et al., 

2007). These findings are consistent with ACL-IQ expertise as cue importance ratings, 

lower fidelity process level data, were related to expertise. Specifically, individuals who 

rated knee/thigh motion as more important and jump height/weight as less important, 

performed better. Cue utility ratings have been included in an extensive battery of 

expertise assessment methods (e.g., Expert Intensive Skills Evaluation or EXPERTise), 

which have been shown to differentiate levels of expertise in a variety of tasks (Loveday, 

Wiggins, Harris, et al., 2013; Loveday, Wiggins, & Searle, 2013; Loveday et al., 2012; 

Wiggins et al., 2014).12   

The current results also specified the relationship between domain-specific 

knowledge and cue utility. Specifically, as theory would suggest, greater domain-specific 

ACL knowledge leads to better performance but this is (in part) due to the use of task-

                                                        
12 Interestingly, for the high level performers (i.e., Exercise Science group), individuals 
with greater variance in their cue utility ratings (representing greater discrimination and 
similar to the Cochran-Weiss-Shanteau index) performed better. The cue utility 
variability metric was the strongest independent correlate with ACL-IQ r (213) = .29 (p < 
.001) in the high ability (Exercise Science) group. When combined with the General 
Population the correlation between ACL-IQ and this cue utility variability index was 
marginal r (427) = .17 (p < .01).  
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relevant information while ignoring irrelevant information. These characteristics of 

expert performance are related to differences in structure and complexity of memory 

representations and are developed through deliberate practice (Ericsson et al., 1993; 

Ericsson & Lehmann, 1996). 

However, the results from the current study also suggest the skill of observational 

ACL injury risk assessment may not be the type of skill which requires extensive 

deliberate practice over many years as seen in chess, surgery, athletics, and many other 

skills. For instance, regression results revealed that high ACL-IQ could result from 

appropriate cue usage even if ACL knowledge is “low” and the individual is not an 

exercise science professional.13 Furthermore, results from the development of the ACL 

nomogram by Myer and colleagues (2011; 2011; 2010a; 2010b; 2011) indicated that 

specific cues such as tibia length, medial knee motion and knee flexion predict ACL 

injury risk, and in theory anybody could use this decision support tool to become an 

“expert.” Accordingly, it may be possible to become proficient in ACL injury risk 

estimation by only assessing the appropriate cues which may be learned in a short period 

of time with simple instructions or with decision support tools (e.g., nomogram, decision 

tree, etc.).  

Decision Support/Training Applications 
 
 As previously discussed, cue usage/utility is important for successfully estimating 

ACL injury risk. Thus, in order to improve performance, attention should be allocated to 

the specific task relevant cues such as knee/thigh motion (as well as landing stiffness and 

symmetry) while ignoring task irrelevant cues such as jump height and weight. The 

                                                        
13 As an example, 10 General Population individuals under the 50th percentile in ACL 
knowledge, had an ACL-IQ higher than the mean of the Exercise Science group (i.e. ACL-
IQ >74% correct).  
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previously developed ACL nomogram provides a decision support tool for assessing ACL 

injury risk but requires two vantage points and assessment of other factors/cues not 

observable through motion information (i.e. hamstring to quadriceps strength ratio). 

Additionally, the weighting of the various cues in the ACL nomogram represents a 

different strategy compared to skilled individuals in the current study. For example, the 

cue with the greatest relative importance for assessing ACL injury risk, according to the 

ACL nomogram, is height,14 whereas the observation “experts” in this study (i.e., 75-100 

percentile) rated knee/thigh motion as most important.  Therefore, a different decision 

support tool using evidence from psychological process data of skilled individuals may 

provide a better alternative approach to improve performance (see Figure 12 for an 

example). A simple decision tree may also serve as an effective learning aid. For instance, 

following many uses of the decision tree, an individual may learn these simple heuristics 

and not need the decision tree.  Furthermore, cognitive process tracing methods such as 

verbal protocol analysis or eye-tracking can be used to reverse engineer superior 

performance in order to optimize training and decision support tools (Cokely et al., 2012; 

Cokely & Kelley, 2009; Ericsson, Charness, Feltovich, & Hoffman, 2006; Ericsson et al., 

1993; Hoffman et al., 2013; Ward, Suss, & Basevitch, 2009). 

                                                        
14 The actual factor is tibial length but is highly correlated to height r(19) = .96.  
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Figure 12. Example Decision Tree for Estimating ACL Injury Risk 

 

Clinical Application/Score Meaning 
 

What is the clinical significance of the ACL-IQ score? The ACL-IQ can be 

transformed into practical meaning by simply subtracting the score from 38 (maximum 

points) and dividing by 5 (number of items/video clips). This value represents the 

average deviation from the criterion on any given video clip or test item. For example, if 

an individual scored a 28, their average absolute error would be 2.00 ([38-28]/5), 

meaning if a video clip was presented with an actual risk value of 5 (on the 1-10 point 

scale: see Figure 2) this individual would, on average, be within ± 2 or between 3 and 7 

(see Figure 13 for depiction of mean error across occupations).  
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Figure 13. Mean Error Across Occupation  
Note. ExSci = Exercise Science; S&C = Strength and Conditioning 
 
 

A mean error of 2 may seem unacceptable to some, but if the purpose of 

identifying the ACL injury risk level of an athlete (i.e., screening) is to decide an 

appropriate intervention (e.g., feedback, training, etc.) the athlete may only need to be 

classified into a “high” or “low” risk group (a classical signal detection task). 

Unfortunately, with only 5 items/trials, a reliable signal detection analysis cannot be 

conducted. However, if we classify the risk level of an athlete at greater than 5 (on the 10 

point scale) as “high” risk we can determine the number of judges who correctly 

classified all 5 athletes (video clips) into either “high” (i.e., above 5) or “low” (i.e., below 

5) risk categories.15 Overall, 20% of the total sample classified all 5 video clips into 

                                                        
15 Three of the five ACL-IQ items/video clips were “high” risk (knee abduction moments 
above 41 Nm) and two were “low” risk (knee abduction moments below 17 Nm). Previous 
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correct “high” and “low” risk categories. Group-wise, 35% of Exercise Science individuals 

and 4% of the General Population classified all 5 video clips into correct “high” and “low” 

risk categories. The average ACL-IQ for these individuals with 100% two-category 

classification accuracy was 31.18 (6.81 error points, mean error of 1.34, or 82% correct).  

ACL-IQ scores can also be compared to the ACL nomogram performance.16 When 

transformed into 1-10 categories, the ACL nomogram demonstrated 8 error points (ACL-

IQ score of 30 or 79% correct). Overall, 23% of the total sample performed better than or 

equal to the ACL nomogram. Group-wise, 40% of Exercise Science individuals and 6% of 

the General Population performed better than or equal to the ACL nomogram. 

Conducting a one-sample t test with ACL nomogram performance across various 

occupations revealed that, on average, the ACL nomogram performed better than all 

professional subgroups except Exercise Science Students (t (26) = -1.01, p = .32). A 

summary of the subgroup proportions above these specific clinical thresholds (i.e., two-

category classification and nomogram) is located in Table 19.  

                                                                                                                                                                     
research has used a knee abduction moment of 25 and 22 Nm as a cut-point for “high” 
and “low” risk.  
16 The current video clips used in this study had concurrent ACL nomogram assessment 
for only the left leg. Right and left leg knee abduction moment (actual risk criterion), 
demonstrated a correlation coefficient of r(19) = .62.  
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The collective clinical criteria suggest an ACL-IQ score of around 80% correct 

may be suitable for justifying the use of observation as a suitable screening method for 

ACL injury risk. However, more data is needed to support this claim and in particular, an 

appropriate signal detection analysis would reveal estimates of sensitivity and specificity, 

which can be used to assess the efficacy of a screening approach (in addition to cost and 

time associated with the screening method and misses/false alarms). Additional studies, 

which are prospective in design, are also needed to assess the predictive validity for using 

the ACL-IQ to identify individuals who are exceptional at predicting actual injury risk.  

Prospective studies should be conducted to assess if ACL injuries can be reduced 

by observational screening. A prospective injury risk study could be conducted by 

incorporating observational screening with appropriate training intervention and 

comparing injury rates with no screening or training everyone. Prospective studies are 

resource intensive and often require many years of data collection. To begin to 

understand if observation can be used to assess ACL injury risk, a pseudo-prospective 

study could be conducted using video-taped individuals (i.e., drop vertical jump) who 

later went on to injure their ACL in a non-contact situation. Specifically, video clips of a 

representative sample of athletes could be shown/rated by observers with various levels 

of ACL-IQ. Classification accuracy could then be established by comparing the observer 

ratings to actual outcomes (no injury/ injury). This design would significantly reduce 

time and any ethical dilemmas associated with identifying injury risk level by unskilled 

individuals as well any confounding effects due to training. The goal would be to 

establish evidence that ACL-IQ scores would be correlated with observers’ classification 

accuracy (ROC area, sensitivity, specificity, etc.) with actual injurious events.  
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Broader Applications 
 

The ACL-IQ represents an interdisciplinary contribution to longstanding 

research programs aimed at preventing injuries and understanding human performance. 

This work provides a foundation for future research investigating the degree to which 

simple observational screening can prevent ACL injuries. Additionally, the web-based 

nature of test and online platform: www.ACL-IQ.org enhances outreach and awareness, 

maximizing research impact. The website not only houses the ACL-IQ, which provides 

individualized feedback to individuals regarding their ACL-IQ performance, but is also a 

repository for data collection, a means of informing the public and other researchers 

about ACL injury/prevention, as well as place to house future training programs or 

decision support tools. 

Beyond ACL-specific implications and applications, the current dissertation 

provides a framework that can be applied to other problems related to movement 

analysis/musculoskeletal injury risk assessment.  For example, biomechanical 

(movement) analysis has been used to predict several costly and debilitating 

musculoskeletal injuries including lower back disorders (Marras et al., 1995), concussive 

head impacts (Rowson et al., 2012), tibial stress fractures (Pohl, Mullineaux, Milner, 

Hamill, & Davis, 2008), fall risk in the elderly (Callisaya et al., 2011), and second ACL 

injury (Paterno et al., 2010) to name a few. Consequently, current biomechanical 

approaches are costly, time intensive, and require specialized training to operate/use.  

An alternative framework focuses on skilled movement analysis. Simple visual 

inspection, as opposed to biomechanical instruments, significantly reduces cost and time. 

Specifically, specialized equipment is not needed and measurement is nearly 

instantaneous. Theoretically, many domains could benefit from using observation as a 



www.manaraa.com

 

   101 

movement analysis method. However, it is not known if individuals have the ability to 

accurately and reliably visually detect movement patterns that place individuals at risk 

for injury in these other domains or situations. Going forward I predict a skilled 

movement analysis approach will be useful when we can: 

1.) Establish a normative benchmark  

2.) Efficiently assess observational skill 

3.) Construct a model of skill mechanisms 

4.) Develop skill training and decision support 

Efficient systems improve health and human performance.  
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APPENDIX A 
 
 
11-Item ACL Knowledge Test 
 
1.) What does ACL stand for? 

  ☐ Anterior cruciate ligament  
  ☐ Anterior collateral ligament  
  ☐ Anatomical cruciate ligament  
  ☐ Anterior condyle ligament  
  ☐ Anatomical collateral ligament  

2.) What joint is the ACL located within? 

  ☐ Hip  
  ☐ Ankle  
  ☐ Pelvis  
  ☐ Knee  
  ☐ Shoulder  

3.) ACL injuries are most common in: 

  ☐ Weightlifting  
  ☐ Soccer  
  ☐ Running  
  ☐ Volleyball  
  ☐ Hockey  

4.) Risk for ACL injury is ______ in men compared to women when participating in the same  
      sport at the same competition level. 

  ☐ Lower  
  ☐ Higher  
  ☐ Equal  
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5.) The ACL functions to prevent: 

  ☐ A. Anterior tibial translation (shin sliding forward)  
  ☐ B. Posterior tibial translation (shin sliding backward)  
  ☐ C. Tibial rotation (shin rotating)  
  ☐ D. Knee flexion (knee bending)  
  ☐ All of the above  
  ☐ A. and C. only  
  ☐ A. and D. only  

6.) The ACL attaches to the: 

  ☐ Front of the tibia to the back of the femur  
  ☐ Back of the tibia to the front of the femur  
  ☐ Medial (inside) side of the tibia and femur  
  ☐ Lateral (outside) side of the tibia and femur  
  ☐ Front of the tibia to medial side of the femur  

7.) Dynamic knee valgus is: 

  ☐ Knee abduction (distal tibia or foot moving away from midline in a frontal view)  
  ☐ Knee adduction (distal tibia or foot moving towards midline in a frontal view)  
  ☐ Rotations of multiple lower body segments resulting in a "knock-knee" position (i.e., inward     
       knee motion)  
  ☐ Stiff landing with straight or extended knee  
  ☐ Toes rotated outward  

8.) What is a knee abduction moment: 

  ☐ Torque generated rotating the knee outward  
  ☐ Torque generated rotating the knee inward  
  ☐ Angle between the tibia and midline  
  ☐ Ground reaction force compressing the knee  
  ☐ Perpendicular distance from the knee to the ground reaction force vector in the frontal  
       plane  

  



www.manaraa.com

 

   116

9.) What is the best training intervention to prevent ACL injuries? 

  ☐ A. Plyometric (jump) training  
  ☐ B. Resistance (strength) training  
  ☐ C. Balance training  
  ☐ D. Aerobic/endurance training  
  ☐ All of the above  
  ☐ A., B., and C. only  

10.) What factors can influence peak knee abduction moment during a drop vertical jump task  
       (check all that apply)? 

  ☐ Tibia length  
  ☐ Quadriceps (Q) Angle  
  ☐ Medial knee motion  
  ☐ Knee flexion angle  
  ☐ Jump Height  
  ☐ Weight  

11.) In young females, low ACL injury risk drop vertical jump technique includes (check all that  
       apply): 

  ☐ Landing softly  
  ☐ Landing stiff or hard  
  ☐ Pointing toes outward  
  ☐ Keeping knees in line with toes (avoiding a "knock-knee" position)  
  ☐ Keeping trunk or upper body vertical (no flexion)  
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APPENDIX B 
 
 
Rate the importance of the following cues for making your ACL injury risk rating. 

 
 
Figure 14. Cue Utility Survey  
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